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Abstract- This paper investigates the use of
partial functions in genetic programming.
Previous work has shown that the convergent
behaviour of populations of partial functions
is very similar to that of populations of total
functions. However the convergence rates of
populations of partial functions have been
slower. The results presented here demonstrate

a significant improvement in the rate of
convergence  of populations of partial
functions, and indicate that partial functions
represent a realistic alternative to total
functions for a range of problems.
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1 Introduction

Historically, practitionersof genetic programminghave
emphasisedthe need for complete definition of the
programs being evolved. Henearly work by Koza(1992)
and others emphasised tingportanceof the completeness
of the operatorsinvolved, while approachessuch as
Strongly Typed Genetic Programming (Montana 1995)
provided mechanisms to ensuagality of programswhile
permitting individual operatorsto be definedonly for a
subset of all potential inputs.

This emphasis otthe totality of the functionsevolved
actsas a straightjacketon geneticprogramming,limiting
the algorithms and data structures investigated —
algorithms, operatorsor data structureswhich do not
preservetotality are likely to be dismissedfrom further
investigation. Previouswork (McKay 2000a,b)on two
toy and one real-world GP applications have suggehted
the convergedbehaviourof populationsof partial and of
total functions are very similar. However with the
algorithms used there, populations of partial functions
reach convergencamore slowly than do populations of
total functions, particularly when measuredin terms of
generations, though the difference is reduced when
measuredn cpu utilisation. This paper investigatesan
adaptiveapproachwhich leadsto faster convergenceof
populations of partiabrograms.Preliminaryresultsshow
a significantly increasedrate of convergencewith only
small differences remaining betweenthe cpu cost of
populations of partial and of total functions.

This is a self-archived copy of the accepted paper, self-archived un- der IEEE
policy. The authoritative, published version can be found at http://ieeexplore.
ieee.org/xpls/abs all.jsp?arnumber=934285&tag=1

1.1 Why partial functions

The original justification for this work lay in the hope
that partial functions would permit greater population
diversity and hence permit superior performance at
convergence. In fact, thisopehasnot beenborneout by
experience- the convergedbehaviourof populations of
partial and of total functions have turned out to be
remarkablysimilar. In consequencehereis at least no
convergent-behavioudis-advantagen using populations
of partial functions.

Howeverin the courseof our investigations,it has
becomeclear that new and interesting algorithms for
genetic programming become available when the
restriction to total functions is relaxed; we hdpebe able
to demonstrate some examples in the near future.

The aim of this paperis to further investigatethe
computational cost of using populations of partial
functions. Earlier work hasuggestec small convergence
rate disadvantageto the use of populations of partial
functions. This paperinvestigatesan adaptivevariant of
the previously proposedixed algorithm, which promises
to significantly reduce computational cost.

2 Details of Approach

As with the previous work, comparisoase basedon two
classes of problem: learning (recursive) list membership
a lisp-like language and learningbooleandescriptionsfor
6- and 11-multiplexers.Theseproblemsare describedin
more detail below. Earlier work had establishedhat, on
these problems, earlyseof implicit fithesssharing(Deb
and Goldberg 1989, Smith et al 1992) led to improved
performance.The experimentstherefore all use fitness
sharing in the initial stage3.he experimentscomparethe
performance of populations ¢dtal functionswith that of
populationsof partial functionsusing an adaptivefitness
measure described in more detail below.

2.1 Partial Functions

A partial function is a function whoselueis not defined
for some argumentvalues. In theseexperiments partial
functionsarerepresentedby the useof a specialsymbol,
‘undef', which may occur at any point the programtree.
Whenthe programruns, any evaluationfor which ‘undef'
is an argument evaluates'tmdef unlessthe value of the
function is independenbf that argument.For example,
boolean 'and' has the truth table shown in table 1.
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The system is basedon Ross' (1999) DCTG-GP
system. DCTG-GP was used because its explicit
representation of theyntaxand semanticsf the program
populationsprovideda simple mechanismto specify the
syntaxand semanticsof the 'undef' symbol. However the
grammarsusedmerely encodethe typing of the problem
space, and so the results apply not onlgrionmar-guided
genetic programming (Whigham 1995), but extend to
strongly typed genetic programming (Montana 1995).

true
false
undef
true

undef
false

undef
undef

false
false
false
false

Table 1: Truth Table for Boolean and

2.2 Implicit Fitness Sharing and Partial
Functions
The approacho fitnesssharingusedis describedn detail
in McKay 2000a. Briefly, we replace the raw fithess
function for an individual i
fa(i) = reward(i(c))
clicases
with the shared fitness function
()= reward(i(c))
sere reward(i'(c))
i"i'(c)=i(c)

With populationsof partial functions, anotherissue
arises:if the payoffs from the sub-problemsare simply
addedtogether(assumingthere are no negativepayoffs),
then there is evolutionary pressure towsotlity, because
even smallrewardsfor poor predictionsare betterthan no
rewardat all. This pressurewould defeatthe intention,
which is to permit increaseddiversity through partial
functions. Hencein this work, the sharedfitnessesare
divided by the number of sub-problems whtble program
attemptsto solve (that is, the fitness of an individual
programis the meanof the sharedrewardsit receives,
averaged over all the sub-problems¥drich its answetris
not 'undef'). For an individual et N(i) be the numberof
cases c for which i(c) is defined, then:

reward(i(c))

f )=
pr_sre{(1 oz N(i) O (Z reward(i’(c))
i":i'(c)=i(c)

Thus the evolutionarypressureon partial functions is
toward accuracyon sub-problemsThis nay be seen by
consideringtwo individualsthat correctly solve the same
setof sub-problemsThe individual that has the smaller
N() , will have the largest fitness. Consider also, an
individual that solves only one problem, but does so
correctly - that individual may have an equivalentfitness
as another individuaihich solvesmany problems,where
again they are all solved correctly. Thus, thisssurewill
not necessarily result in individuatapableof solving the
whole problem.

clicases

There aremany possiblemechanismgo alleviatethis.
Previously (McKay 2000c) we have used ensemble
learning mechanisms,unfortunately with only limited
success.An alternative approachis to use the partial
function fitness sharing measure defined abeady in the
run, but to switch to raw fitness at the endtoé run. Our
previous work used a fixed, ramped schedulefor this
purpose.Unfortunately the partial share fithess metric
above appears to be protteover-fitting: detailedanalysis
of the populationsshowedmany individuals which were
definedfor just one or two learning instances.A fixed
schedulepermits this over-fitting to continue, to the
detrimentof the learning successin this paper,we use
instead aradaptiveapproachjn which the gradualchange
from partial function fitness sharing to rditness depends
on statistics from the population. The statistics used
dependntrinsically on the partial natureof the functions
in the population.Thusit is not possibleto undertakea
similar approach for total functions. Instead, for
comparisonpurposesve use the most similar algorithm
we have available, nametie fixed rampedapproachused
in previous work.

2.3 Stepped Evaluation
Stepped evaluation modifies the partial evaluafiorction
to the following:

N reward(i(c))
Fapa (1) _Cmczm max(N(i),k) O _‘;reward(i'(c))

c)=i(c)

This equationincorporateghe new term, max(N(l), k). k
is a variable that gradualipncreasegrom the initial value
of 1. Consideringk, if it hasthe value 1, thenthe above
evaluation is identical to the previous partial/share
evaluation. Ifk equalsthe numberof casesthen (modulo
a constant) we gehe standarditnesssharingformula. In
steppedevaluation,the value of k changesthrough the
evaluation,steppinggradually upwardsfrom 1. The key
decision is the rate at whighchangesTwo user-definable
parametersy andp, are used to control this.

For eachgeneration,the number of individuals that
solve k casesis evaluated.If that numberexceedsa%,
thenk is increased bf3%. Thus thevaluesof a andf are
critical; whena is small, k will often be increasedwhen
B is large, the increaseswill also be large. Ideally, k
should advance at a rate appropriatéheocondition of the
individuals, gradually providing incentive for them to
cover more cases,whilst gradually removing narrowly
focused individuals.

The searchspacefor this experimentis defined by the
grammatrin table 2 (for total functions, the productions
leading to 'undef' are deleted):



3 Experiments: List Membership

S>M

M -> if EXPN EXPN M
M->"

M -> undef

EXPN -> atom LST
EXPN -> eq LST LST
EXPN -> member x LST
EXPN -> true

EXPN -> false

EXPN -> undef

LST -> first LST

LST ->rest LST

LST -> x

LST >y

LST -> undef

Table 2: Grammar for List Membership

The recursive callo memberallows the possibility of
infinite loops. To preventthis, a count of the depth of
looping was kept, anda depthgreaterthan 20 causedthe
function to return the value 'loop’; this was treatedin
fitness evaluation as an incorrect (but defined) answer.
The exampledor learning this function consistedof ten
true cases and ten false, and are shown in table 3.

TRUE CASES

FALSE CASES

member(1l [6

member(1l [1

member(1 [2 1]) member(1 [3 6])
member(1 [2 3 1]) member(1 [2 3 6])
member(1[2341 member(1[23 46
member(1[2345 member(1[23 45
member(1[2345 member(1[2345
member(1[2345 member(1[2345
member(1[2345 member(1[2345
member(1[2345 member(1[2345 )
member(1[2345 member(1[2345 3])
Table 3: List Membership Cases

The aim of the experimentwas to find a program
which correctly computes membership. An  example
solution is:

(if (eq x (first y))

true

(if (menber x (rest y))
true
fal se))

The experimentaketupusedtournamentselectionand
half-rampedinitialisation as implementedin DCTG-GP
(Ross, 1999); table 4 shows experimental parameters:

PARAMETER SPECIFICATION

Number of Runs 100
Max Generations 200
Population Size 500

Max depth (initial pop) 8
Max depth (subsequent) 10
Tournament size 5
Crossover Probability 0.9
Mutation Probability 0.1

Table 4: Run Parameters (List Membership)

The raw fitnessfunction wasthe proportionof the 20
casescorrectly solved.In principle, it would be possible
for a non-recursive prograto solve all 20 casesput not
within the maximum depth imposedon the population.
Each run terminated at 200 generations.

4 Results: List Membership

Figure 1 shows the percentageof runs incomplete
plotted againstgenerationln all plots, the legend shows
the a value of the partial function runs first, then the 3
value (ie partial, 50%20% is a run with a populationof
partial functions, witha = 50% and3 = 20%).
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Figure 1. List Membership, Error rate of
Best Individual by Generation

Our experience with populatiord partial functionsis
that they take less time ®valuatea generatiorthan with
total functions. Hence figure 2 shows the same data
plotted against cpu time.
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Figure 2: List Membership, Error rate of
Best Individual by cpu time
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From figure 3, we might hypothesisdhat the relative
performancetime/generationperformanceis simply an
artefact of the size of the programs generated.

5 Experiments: Multiplexers

Two setsof experimentswere conductedusing the 11-

multiplexer and 6-multiplexer problemghe former seeks
a booleanexpressionfor a multiplexer with two address
andfour datalines, the latter with threeaddressand eight

data lines. The search space for the 6-multiplexdefiaed
by the grammarin table 5 (for total functions, the

productions leading to 'undef' are deleted).

EXPR - BOOL

BOOL - TERM

BOOL - and BOOL BOOL
BOOL - or BOOL BOOL
BOOL - not BOOL
BOOL - if BOOL BOOL BOOL
BOOL - undef

TERM - a0

TERM - al

TERM - dO

TERM - d1

TERM - d2

TERM - d3

TERM - undef

Table 5: Grammar for 6-Multiplexer

The search space for the 11 multipleggtendsthis by
adding TERM productions for address line a2 and lilads
d4 through d7.

The exampledor learningthe 6 multiplexer consisted
of the 64 possible input/output pairs - see tahl€&or the
11 multiplexer, computationalcost precludedevaluation
over the 2048 input/output pairs in each generation.
Instead, for each generation,64 of these pairs were
randomly selectedand used to evaluatethat generation.
Since terminatiorwas basedon a zeroerror rate for these
64 cases, it is possibldat someincorrectsolutionswere
acceptedas correct. However this possibility does not
affectthe comparisonsundertakerin this work, since all
treatments are affected equally.

PARAMETER SPECIFICATION

Number of Runs 100

Max Generations 500 (11 multiplexer)
200 (6 multiplexer)

Population Size 150

Max depth (initial pop) 8

Max depth (subsequent) 10

Tournament size 5

Crossover Probability 0.9

Mutation Probability 0.1

Table 6: Run Parameters (Multiplexers)

The experimentalsetup used tournament selection and

half-rampedinitialisation; experimentaparametergor the

11 and 6 multiplexer runs are given in tables 6 and 7:




6 Results: Multiplexers
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7 Discussion

The results presented here are consistéifit our previous
results, showing that populations of parfiahctionshave
similar converged behaviour to populations of total

functions. However with the right choice of parameters,
stepped evaluation nogives convergenceatesfor partial

functions very similar to those obtained from total

functions, both in terms of numberof evaluations,and

particularly in terms of computation time. The one

exception to this is the very simple 6-multiplexer
problem. Perhaps thesuehereis that the problemis so

simple that the steppegl/aluationapproachdoesnot have
time to act before the total functions population has
converged.

In all three experiments,the best performancefor
partial functionswas achievedby the a = 50% and 3 =
20% settings.Interestingly,this is the most eagerof the
four settings— with this setof parametersthe systemis
more often preparedto alter k, andto alterit in larger
steps.

The four setsof a and 3 were chosenby informed
guesswork.The results would suggestthat it may be
worth investigating still more eager settings of the
algorithm —ie smallervaluesof a andlarge valuesof 3.
With the appropriate choices af andf, it is conceivable
that steppedevaluationwith partial functions may even
outperform the convergence rate of tdtaictions, at least
in terms of cpu time, if not number of evaluations.

The experiments reported here used a range of
parametervalueschosenmore-or-lessat random.lt seems
apparent that with appropriate choice of parameter
settings, the performanceof partial functions could be
brought even closer to, and perhaps exceed, the
performance ofotal functions. An alternativeapproachs
to try to eliminate the parametersAfter conversations
with Xin Yao, we are now planning to investigatethe
possibility of replacing fithess sharing by an anti-
correlation metric, further enhancedby the analysis of
information gain.

8 Conclusions

The resultspresentechereare at least suggestivethat,
combinedwith suitable fithess evaluation mechanisms,
populations of partial functions can perform at a
comparablelevel with populations of total functions.
Thereis still a clear need for further work comparing
populations of partial and total functions a much wider
rangeof problems,andwe plan to undertakethat in the
relatively near future.

The most important consequencef this work is the
possibility that genetic programming can escape the
restrictionto populationsof total functions. This greatly
widens the pool of potential algorithms and problem
representationavailable.We hope to presentsome new
algorithms based on this idea in the near future.
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