
� � � � � � � � � 	
 � � 	 � 	
 � � � � � � � � �
 � � � 	
 � �
 � �
 � � � � � � 	 � � � � � �
 �

Daryl Essam and R. I. (Bob) McKay� � � � � � � � � � � � � ! " � � # ! $ � ! %
& $ # ' ! " (#) � � � � ! * ! % & $ # ' ! " (#) � � + ! , � � � � - . � ! (% / 0 1 / %+ � " � � � 0 " # ' ! % � . � � 2 ! � � % / � 3 %� . $ 2 ! " " . % / � (" . � # .

4 5 . ") � % " # � 6 7 � (8 . 5 � . 8 ! 5 � 8 . �

Abstract- This paper investigates the use o f
partial functions in genetic programming.
Previous work has shown that the convergent
behaviour of populations of partial functions
is very similar to that of populations of total
functions. However the convergence rates o f
populations of partial functions have been
slower. The results presented here demonstrate
a significant improvement in the rate o f
convergence of populations of partial
functions, and indicate that partial functions
represent a realistic alternative to total
functions for a range of problems.

Keywords: Genetic Programming, Partial
Functions, Fitness Evaluation

1 Introduction

Historically, practitioners of genetic programming have
emphasised the need for complete definition of the
programs being evolved. Hence early work by Koza(1992)
and others emphasised the importance of the completeness
of the operators involved, while approaches such as
Strongly Typed Genetic Programming (Montana 1995)
provided mechanisms to ensure totality of programs while
permitting individual operators to be defined only for a
subset of all potential inputs.

This emphasis on the totality of the functions evolved
acts as a straightjacket on genetic programming, limiting
the algorithms and data structures investigated –
algorithms, operators or data structures which do not
preserve totality are likely to be dismissed from further
investigation. Previous work (McKay 2000a,b) on two
toy and one real-world GP applications have suggested that
the converged behaviour of populations of partial and of
total functions are very similar. However with the
algorithms used there, populations of partial functions
reach convergence more slowly than do populations of
total functions, particularly when measured in terms of
generations, though the difference is reduced when
measured in cpu utilisation. This paper investigates an
adaptive approach which leads to faster convergence of
populations of partial programs. Preliminary results show
a significantly increased rate of convergence, with only
small differences remaining between the cpu cost of
populations of partial and of total functions.

1.1 Why partial functions
The original justification for this work lay in the hope
that partial functions would permit greater population
diversity and hence permit superior performance at
convergence. In fact, this hope has not been borne out by
experience – the converged behaviour of populations of
partial and of total functions have turned out to be
remarkably similar. In consequence, there is at least no
convergent-behaviour dis-advantage in using populations
of partial functions.

However in the course of our investigations, it has
become clear that new and interesting algorithms for
genetic programming become available when the
restriction to total functions is relaxed; we hope to be able
to demonstrate some examples in the near future.

The aim of this paper is to further investigate the
computational cost of using populations of partial
functions. Earlier work has suggested a small convergence
rate disadvantage to the use of populations of partial
functions. This paper investigates an adaptive variant of
the previously proposed fixed algorithm, which promises
to significantly reduce computational cost.

2 Details of Approach

As with the previous work, comparisons are based on two
classes of problem: learning (recursive) list membership in
a lisp-like language, and learning boolean descriptions for
6- and 11-multiplexers. These problems are described in
more detail below. Earlier work had established that, on
these problems, early use of implicit fitness sharing (Deb
and Goldberg 1989, Smith et al 1992) led to improved
performance. The experiments therefore all use fitness
sharing in the initial stages. The experiments compare the
performance of populations of total functions with that of
populations of partial functions using an adaptive fitness
measure described in more detail below.

2.1 Partial Functions
A partial function is a function whose value is not defined
for some argument values. In these experiments, partial
functions are represented by the use of a special symbol,
'undef', which may occur at any point in the program tree.
When the program runs, any evaluation for which 'undef'
is an argument evaluates to 'undef' unless the value of the
function is independent of that argument. For example,
boolean 'and' has the truth table shown in table 1.

rim
Text Box
This is a self-archived copy of the accepted paper, self-archived un- der IEEE policy. The authoritative, published version can be found at http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=934285&tag=1

The system is based on Ross' (1999) DCTG-GP
system. DCTG-GP was used because its explicit
representation of the syntax and semantics of the program
populations provided a simple mechanism to specify the
syntax and semantics of the 'undef' symbol. However the
grammars used merely encode the typing of the problem
space, and so the results apply not only to grammar-guided
genetic programming (Whigham 1995), but extend to
strongly typed genetic programming (Montana 1995).

and false undef true
false false false false
undef false undef undef
true false undef true

Table 1: Truth Table for Boolean and

2.2 Implicit Fitness Sharing and Partial
Functions

The approach to fitness sharing used is described in detail
in McKay 2000a. Briefly, we replace the raw fitness
function for an individual i
f i reward i craw

c cases

() = ()()
∈
∑

with the shared fitness function

f i
reward i c

reward i cshare

i i c i c
c cases

() =
()()

′()()
′ ()= ()

∈ ∑∑
: '

With populations of partial functions, another issue
arises: if the payoffs from the sub-problems are simply
added together (assuming there are no negative payoffs),
then there is evolutionary pressure toward totality, because
even small rewards for poor predictions are better than no
reward at all. This pressure would defeat the intention,
which is to permit increased diversity through partial
functions. Hence in this work, the shared fitnesses are
divided by the number of sub-problems which the program
attempts to solve (that is, the fitness of an individual
program is the mean of the shared rewards it receives,
averaged over all the sub-problems for which its answer is
not 'undef'). For an individual i, let N(i) be the number of
cases c for which i(c) is defined, then:

f i
reward i c

N i reward i cpart share

i i c i c
c cases

_

: '

() =
()()

() ∗ ′()()
′ ()= ()

∈ ∑∑

Thus the evolutionary pressure on partial functions is
toward accuracy on sub-problems. This nay be seen by
considering two individuals that correctly solve the same
set of sub-problems. The individual that has the smaller
N(I) , will have the largest fitness. Consider also, an
individual that solves only one problem, but does so
correctly - that individual may have an equivalent fitness
as another individual which solves many problems, where
again they are all solved correctly. Thus, this pressure will
not necessarily result in individuals capable of solving the
whole problem.

There are many possible mechanisms to alleviate this.
Previously (McKay 2000c) we have used ensemble
learning mechanisms, unfortunately with only limited
success. An alternative approach is to use the partial
function fitness sharing measure defined above early in the
run, but to switch to raw fitness at the end of the run. Our
previous work used a fixed, ramped schedule for this
purpose. Unfortunately the partial share fitness metric
above appears to be prone to over-fitting: detailed analysis
of the populations showed many individuals which were
defined for just one or two learning instances. A fixed
schedule permits this over-fitting to continue, to the
detriment of the learning success. In this paper, we use
instead an adaptive approach, in which the gradual change
from partial function fitness sharing to raw fitness depends
on statistics from the population. The statistics used
depend intrinsically on the partial nature of the functions
in the population. Thus it is not possible to undertake a
similar approach for total functions. Instead, for
comparison purposes we use the most similar algorithm
we have available, namely the fixed ramped approach used
in previous work.

2.3 Stepped Evaluation
Stepped evaluation modifies the partial evaluation function
to the following:

f i
reward i c

N i k reward i cstepped

i i c i c
c cases

() =
()()

() ∗ ′()()
′ ()= ()

∈ ∑∑ max(,)
: '

This equation incorporates the new term, max(N(I), k). k
is a variable that gradually increases from the initial value
of 1. Considering k, if it has the value 1, then the above
evaluation is identical to the previous partial/share
evaluation. If k equals the number of cases, then (modulo
a constant) we get the standard fitness sharing formula. In
stepped evaluation, the value of k changes through the
evaluation, stepping gradually upwards from 1. The key
decision is the rate at which k changes. Two user-definable
parameters, α and β, are used to control this.

For each generation, the number of individuals that
solve k cases is evaluated. If that number exceeds α%,
then k is increased by β%. Thus the values of α and β are
critical; when α is small, k will often be increased; when
β is large, the increases will also be large. Ideally, k
should advance at a rate appropriate to the condition of the
individuals, gradually providing incentive for them to
cover more cases, whilst gradually removing narrowly
focused individuals.
The search space for this experiment is defined by the
grammar in table 2 (for total functions, the productions
leading to 'undef' are deleted):

3 Experiments: List Membership

S -> M
M -> if EXPN EXPN M
M -> ''
M -> undef
EXPN -> atom LST
EXPN -> eq LST LST
EXPN -> member x LST
EXPN -> true
EXPN -> false
EXPN -> undef
LST -> first LST
LST -> rest LST
LST -> x
LST -> y
LST -> undef
Table 2: Grammar for List Membership

The recursive call to member allows the possibility of
infinite loops. To prevent this, a count of the depth of
looping was kept, and a depth greater than 20 caused the
function to return the value 'loop'; this was treated in
fitness evaluation as an incorrect (but defined) answer.
The examples for learning this function consisted of ten
true cases and ten false, and are shown in table 3.

TRUE CASES FALSE CASES
member(1 [1]) member(1 [6])
member(1 [2 1]) member(1 [3 6])
member(1 [2 3 1]) member(1 [2 3 6])
member(1 [2 3 4 1]) member(1 [2 3 4 6])
member(1 [2 3 4 5 1]) member(1 [2 3 4 5 6])
member(1 [2 3 4 5 6 1]) member(1 [2 3 4 5 6 7])
member(1 [2 3 4 5 6 7 1]) member(1 [2 3 4 5 6 7 8])
member(1 [2 3 4 5 6 7 8 1]) member(1 [2 3 4 5 6 7 8 9])
member(1 [2 3 4 5 6 7 8 9 1]) member(1 [2 3 4 5 6 7 8 9 2])
member(1 [2 3 4 5 6 7 8 9 2 1]) member(1 [2 3 4 5 6 7 8 9 2 3])

Table 3: List Membership Cases
The aim of the experiment was to find a program

which correctly computes membership. An example
solution is:

(if (eq x (first y))
 true
 (if (member x (rest y))
 true
 false))
The experimental setup used tournament selection and

half-ramped initialisation as implemented in DCTG-GP
(Ross, 1999); table 4 shows experimental parameters:

9 : ; : < = > = ; ? 9 = @ A B A @ : > A C D
Number of Runs 100
Max Generations 200
Population Size 500
Max depth (initial pop) 8
Max depth (subsequent) 10
Tournament size 5
Crossover Probability 0.9
Mutation Probability 0.1

Table 4: Run Parameters (List Membership)

The raw fitness function was the proportion of the 20
cases correctly solved. In principle, it would be possible
for a non-recursive program to solve all 20 cases, but not
within the maximum depth imposed on the population.
Each run terminated at 200 generations.

4 Results: List Membership

Figure 1 shows the percentage of runs incomplete
plotted against generation. In all plots, the legend shows
the α value of the partial function runs first, then the β
value (ie partial, 50%: 20% is a run with a population of
partial functions, with α = 50% and β = 20%).

Figure 1: List Membership, Error rate of
Best Individual by Generation

Our experience with populations of partial functions is
that they take less time to evaluate a generation than with
total functions. Hence figure 2 shows the same data
plotted against cpu time.

Figure 2: List Membership, Error rate of
Best Individual by cpu time

Figure 3: List Membership, Average Size o f
Individuals

From figure 3, we might hypothesise that the relative
performance time/generation performance is simply an
artefact of the size of the programs generated.

5 Experiments: Multiplexers

Two sets of experiments were conducted, using the 11-
multiplexer and 6-multiplexer problems. The former seeks
a boolean expression for a multiplexer with two address
and four data lines, the latter with three address and eight
data lines. The search space for the 6-multiplexer is defined
by the grammar in table 5 (for total functions, the
productions leading to 'undef' are deleted).

EXPR → BOOL
BOOL → TERM
BOOL → and BOOL BOOL
BOOL → or BOOL BOOL
BOOL → not BOOL
BOOL → if BOOL BOOL BOOL
BOOL → undef
TERM → a0
TERM → a1
TERM → d0
TERM → d1
TERM → d2
TERM → d3
TERM → undef
Table 5: Grammar for 6-Multiplexer

The search space for the 11 multiplexer extends this by
adding TERM productions for address line a2 and data lines
d4 through d7.

The examples for learning the 6 multiplexer consisted
of the 64 possible input/output pairs - see table 8. For the
11 multiplexer, computational cost precluded evaluation
over the 2048 input/output pairs in each generation.
Instead, for each generation, 64 of these pairs were
randomly selected and used to evaluate that generation.
Since termination was based on a zero error rate for these
64 cases, it is possible that some incorrect solutions were
accepted as correct. However this possibility does not
affect the comparisons undertaken in this work, since all
treatments are affected equally.

9 : ; : < = > = ; ? 9 = @ A B A @ : > A C D
Number of Runs 100
Max Generations 500 (11 multiplexer)

200 (6 multiplexer)
Population Size 150
Max depth (initial pop) 8
Max depth (subsequent) 10
Tournament size 5
Crossover Probability 0.9
Mutation Probability 0.1

Table 6: Run Parameters (Multiplexers)
The experimental setup used tournament selection and
half-ramped initialisation; experimental parameters for the
11 and 6 multiplexer runs are given in tables 6 and 7:

6 Results: Multiplexers

The Error rate by generation for the 11 multiplexer is
shown in figure 4; figure 5 shows the same result by cpu
time, while figure 6 shows the evolution of program size.
Again, the results are consistent with the hypothesis that
the cause of the faster execution of the partial function
populations is simply the smaller size of the partial
functions. However this hypothesis is not compatible
with figures 7, 8 and 9, showing the equivalent results for
the 6 multplexer. The cause of the faster execution of
partial function populations thus requires further
investigation.

Figure 4: 11 Multiplexer, Error rate of Best
Individual by Generation

Figure 5: 11 Multiplexer, Error rate of Best
Individual by cpu time

Figure 6: 11 Multiplexer, Average Size of
Individuals

 Figure 7: 6 Multiplexer, Error rate of Best
Individual by Generation

 Figure 8: 6 Multiplexer, Error rate of Best
Individual by cpu time

Figure 9: 6 Multiplexer, Average Size o f
Individuals

7 Discussion

The results presented here are consistent with our previous
results, showing that populations of partial functions have
similar converged behaviour to populations of total
functions. However with the right choice of parameters,
stepped evaluation now gives convergence rates for partial
functions very similar to those obtained from total
functions, both in terms of number of evaluations, and
particularly in terms of computation time. The one
exception to this is the very simple 6-multiplexer
problem. Perhaps the issue here is that the problem is so
simple that the stepped evaluation approach does not have
time to act before the total functions population has
converged.

In all three experiments, the best performance for
partial functions was achieved by the α = 50% and β =
20% settings. Interestingly, this is the most eager of the
four settings – with this set of parameters, the system is
more often prepared to alter k, and to alter it in larger
steps.

The four sets of α and β were chosen by informed
guesswork. The results would suggest that it may be
worth investigating still more eager settings of the
algorithm – ie smaller values of α and large values of β.
With the appropriate choices of α and β, it is conceivable
that stepped evaluation with partial functions may even
outperform the convergence rate of total functions, at least
in terms of cpu time, if not number of evaluations.

 The experiments reported here used a range of
parameter values chosen more-or-less at random. It seems
apparent that with appropriate choice of parameter
settings, the performance of partial functions could be
brought even closer to, and perhaps exceed, the
performance of total functions. An alternative approach is
to try to eliminate the parameters. After conversations
with Xin Yao, we are now planning to investigate the
possibility of replacing fitness sharing by an anti-
correlation metric, further enhanced by the analysis of
information gain.

8 Conclusions

The results presented here are at least suggestive that,
combined with suitable fitness evaluation mechanisms,
populations of partial functions can perform at a
comparable level with populations of total functions.
There is still a clear need for further work comparing
populations of partial and total functions on a much wider
range of problems, and we plan to undertake that in the
relatively near future.

The most important consequence of this work is the
possibility that genetic programming can escape the
restriction to populations of total functions. This greatly
widens the pool of potential algorithms and problem
representations available. We hope to present some new
algorithms based on this idea in the near future.

Acknowledgements

The ideas in this paper have benefited greatly from
discussions over the years with Paul Darwen, Peter
Whigham, Xin Yao, Ko-Hsin Liang and Hussein Abbass.
Thank you.

Bibliography

Deb, K and Goldberg, D E: 'An investigation of niche and
species formation in genetic function optimization' in J D
Schaffer (Ed) Proceedings of the Third International
Conference on Genetic Algorithms, Pp 42-50, Morgan
Kaufmann, 1989

Koza, J R ‘Genetic Programming: on the Programming of
Computers by means of Natural Selection’, Bradford /
MIT Press, 1992

McKay, R I: ‘Partial Functions in Fitness-Shared Genetic
Programming', Proceedings of the 2000 Congress on
Evolutionary Computation, IEEE Piscataway, 2000, Pp
349 – 356

McKay, R I: ‘Variants of Genetic Programming for
Species Distribution Modelling – Fitness Sharing, Partial
Functions, Population Evaluation’, submitted to
Evolutionary Computation; abstract in Recknagel, F (ed)
Abstracts of the Second International Conference on
Applications of Machine Learning to Ecological
Modelling, Adelaide, November 2000

McKay, R I: ‘Committee Learning of Partial Functions in
Fitness-Shared Genetic Programming’, CD-ROM
Proceedings of the 2000 Conference of the IEEE Industrial
Electronics Society and Simulated Evolution and Learning
2000, IEEE Press, Piscataway, 2000

Montana, D J: 'Strongly Typed Genetic Programming',
Evolutionary Computation 3(2), Pp. 199-230, 1995

Ross, B J: 'Logic-based Genetic Programming with
Definite Clause Translation Grammars', Technical Report

#CS-99-02, Dept of Computer Science, Brock University,
St Catharines Ontario, 1999; summary in Banzhaf et al
(eds) Proceedings of the Genetic and Evolutionary
Computation Conference, P1236, Morgan Kaufmann,
1999

Smith, R E, Forrest, S and Perelson, A S: 'Searching for
diverse, cooperative populations with genetic algorithms',
Evolutionary Computation 1(2), Pp 127 - 149, 1992

Whigham, P A: 'Grammatically-biased Genetic
Programming' in J Rosca (ed) Proceedings of the
Workshop on Genetic Programming: From Theory to
Real-World Applications, Pp 33-41, Morgan Kaufmann,
1995

