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Abstract- The Computer Defense Immune System 
(CDIS) is an artificial immune system for detecting 
computer viruses and network intrusions. We present a 
simple chromosome-based evaluation model for CDIS. 
In this model, the genotype space is a linear number 
sequence, and a digital pattern sequence is produced as 
the phenotype space using a number of mechanisms, 
including pattern mining and genetic algorithms. We 
present a range of experiment analyses to show the 
higher efficiency and stronger immunity of this model, 
improving the rate of successful prediction in intrusion 
detection in CDIS. The detectors generated may have 
higher coverage, hence would impose lower 
communications and computational loads on systems in 
which they were incorporated.

1 Introduction

The Computer Defense Immune System (CDIS) is a 
multilevel and distributed defense system, modeled on the 
biological immune process (Anchor et al, 2002a) and 
aimed at signature-based detection of computer viruses 
and network intrusions. The central part of CDIS is 
Computational Immune System (CIS) or Artificial 
Immune System (AIS) (Dasgupta, 1999).

We aim, in the work presented here, to improve the 
performance of CDIS in three respects:
 Prediction accuracy – if prediction accuracy can be 

improved, with fewer false negatives and false 
positives, then computer systems can be better 
protected

 Computational costs – the primary computational cost 
of a CDIS system is in detection, since every potential 
intruder must be checked against the antibody suite. 
The cost is proportional to the number of detectors, 
hence methods requiring fewer, more powerful 
detectors will impose less computational load on the 
overall system.

 Communications load – future CDIS applications will 
presumably follow a network model, with a need to 
distribute up-to-date detectors over the network. The 
resultant communications load will be proportionate to 
the number of detectors, hence again, fewer, more 
powerful detectors are desirable.

CDIS is designed to address two main problems in 
virus and intrusion detection. The first is that the problem 
domain is constantly changing, i.e. new defenses are 
confronted by new threats in a never-ending cycle. The 
second is that the problem domain space is enormous, i.e. 
it is difficult to cover limitless unknown space with limited 
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knowledge. CDIS addresses this by applying affinitive 
behaviors of the immune system model to detect new 
attacks. CDIS uses a stochastic search technique in an 
effort to cover those parts of the search landscape that may 
be the most fruitful. There has been previous work on 
developing CDIS for the signature-based detection of 
signature-based computer viruses and header-based 
detection of network intrusion packets. Customarily, 
antibodies, whose role is to identify intrusion, have been 
produced by a variety of methods, including Decision 
Trees, Finite State Machines and Artificial Neural 
Networks (Mitchell, 1997; Anchor et al, 2002b; Bradley et 
al, 2002; Zengren Yuan, 1999). But there are a number of 
opportunities for improvement in CDIS, especially in the 
method of producing antibodies and in cooperative 
detection. In particular, the antibodies produced by 
negative selection are imperfectly representational, and the 
antibodies optimized by stochastic search are imperfectly 
selective. Moreover the effect of cooperative detection has 
not been entirely evaluated by quantitative analysis.

Building on the work of Lamont (Anchor et al, 2002a; 
Anchor et al, 2002b), Dasgupta (Dasgupta, 1999), and 
Forrest (Hofmeyr et al, 1999; Forrest and Perelson, 1994), 
we apply a chromosome-based evaluation model to 
address the problems mentioned above and to boost the 
immunity and the prediction capability of CDIS. Section II 
describes the CDIS antibody lifecycle. Section III provides 
a simple chromosome-based evaluation model, while 
Section IV presents experiment analysis based on the 
detection of number sequences. Section V presents some 
ideas for further work.

2 CDIS Antibody Lifecycle

CDIS, by producing antibodies that can detect signature-
based computer viruses and header-based network packets, 
may remedy the disadvantages of static computer defense 
systems (Anchor et al, 2002a). The life cycle of a network 
intrusion antibody in CDIS is shown is Figure 1. The main 
components of the lifecycle are described in detail below; 
several potential improvements are included in the 
description.

2.1 Antibody Creation and Negative Selection
Firstly, the system randomly generates a number of 

antibodies, encoded as binary sequences. The length, as 
well as each digit, of the sequence is stochastic. Each 
sequence, being regarded as an antibody, is passed through 
negative selection. The antibody is checked to determine if 
any individual of the self-training-set  matches it (Hofmeyr 
et al, 1999). If so, the antibody is discarded and another is 
randomly generated. If not, it passes to the next stage, i.e. 
Affinity Maturation. The negative selection normally used 
is a single-direction matching. We propose a more 
complex bi-directional matching for negative selection, 
including both the degree of mismatch with the Self-
training-set, and the degree of match with the Nonself-
training-set, aiming to improve the reliability of negative 
selection.

2.2 Affinity Maturation
Since antibodies are created randomly, their locations and 
range parameters are not likely to be as large or general as 
possible. A stochastic search technique is usually used to 
optimize the antibodies, improving their recognition 
capability to the maximum extent possible without 
matching any individuals in the self-training-set. But this 
search technique is random and can’t ensure the 
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particularity of the antibodies. Thus, this paper proposes 
that genetic algorithms, using reproduction, crossover and 
mutation, be used to evolve the antibodies. The process of 
evolution of the antibodies, which evolves the antibody-
pattern-set and washes out the inferior antibodies, 
enhances the validity and "affinity" of antibodies. The 
process of affinity maturation can be regarded as a local 
search for better antibodies.

2.3 Imperfect Matching Method
In the standard ‘perfect matching’ method, the object being 
checked will not be confirmed as an intrusion in the 
inspection system unless each digit of the object is the 
same as that of an antibody, the binary sequence 
mentioned above. In this approach, each antibody can only 
recognize one incursive antigen, so that the efficiency of 
recognition is extraordinarily low. The imperfect matching 
method in CDIS requires that only some, not all, of the 
digits are the same as the object being checked. If the 
values of the number sequence are not restricted to 0 and 
1, matching can be extended to a requirement that each 
digit of the object is within a certain appointed nominated 
range. Thus, the matching method is imperfect in the sense 
that it matches a space rather than a single point. To 
further extend the range of recognition, this paper 
proposes a pattern matching method. This method extracts 
the most representative pattern set, providing a larger area 
of coverage.

2.4 Costimulation
Since the self-training-set is not perfectly representative, 
the signatures produced by the self-training-set may show 
some errors and produce false predictions, mistaking some 
normal behaviors for intrusions. To solve this problem, the 
detection phase is completed by the cooperation of 
multiple antibodies, known as costimulation in CDIS. So 
an incoming object is not categorized as an attack unless 
multiple antibodies detect it. But the effect of cooperative 
detection has not been entirely evaluated by quantitative 
analysis. This paper carries out a simple evaluation to look 
for an affinitive relationship between the object being 
checked and the excellent antibody set, and to complete 
the work of cooperative detection. Rather than the solo 
action of an individual it is the cooperative activity of a 
whole set of excellent antibodies which represents the 

generality of the set and increases the reliability of 
prediction.
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3 Chromosome-based Evaluation Model in 
CDIS

3.1 Genotype Space and Phenotype Space in CDIS
A gene is a biological concept. In biology, taking a 

rabbit as an example, exterior characteristics, such as the 
length of tail, the size of ears and the color of eyes, are 
determined by different sequences of genes. These exterior 
characteristics of a rabbit, which are presentations of the 
non-visible genes, can be directly judged by the rabbit’s 
appearance. Thomas Bäck first introduced the concepts of 
Genotype Space and Phenotype Space in the applications 
of Evolutionary Computing (Thoma Bäck et al, 1997). In 
his opinion, the abstract mathematical objects, such as 
binary strings, are regarded as a genotype space in which 
to carry out genetic operations conveniently, and the 
diverse parameters of the real system, such as energy 
consumption and output, are considered as a phenotype 
space. The process of producing phenotype space from 
genotype space is thus a crucial consideration.

The concepts mentioned above are applied to CDIS in 
this paper, in which the Self-training-set and Nonself-
training-set are viewed as the genotype space in the CDIS 
antibody lifecycle. The Self-patterns and Nonself-patterns, 
being treated as chromosomes, are produced by pattern-
mining over genotype space. Then through negative 
selection, antibody patterns with obvious signatures are 
produced. After an evolutionary process using genetic 
algorithms, excellent Nonself chromosomes are evolved, 
which combine and form a lot of sequences of 
chromosomes, i.e. phenotype space. The evaluation 
algorithm is thus a method to relate genotype space to 
phenotype space.

The number subsequences can be used as excellent 
chromosomes in genotype space. The more characters are 
similar to the elements in Nonself space and dissimilar to 
those in Self space, the more the object being checked is 
considered to be close to Nonself, and vice versa. In this 
paper, we try to exploit this "affinity" by using an 
evaluation algorithm. This immune process will be 
described in detail in section 3.2.

3.2 Chromosome-based Immune process in CDIS
This paper embodies a chromosome-based evaluation 
model derived from research into the CDIS antibody 
lifecycle. The process of producing phenotype space from 
genotype space in CDIS is shown in Figure 2. The main 
components of the immune process are described in detail 
as follows.

In this paper, we assume that the supposed object being 
detected is a binary sequence. Three important algorithms 
are proposed to look for an appropriate evaluation. The 
immune process is discussed under the succeeding three 
headings.

(1) Extract signature, code gene, mine pattern
The binary coded Self-training-set TS and Nonself-

training-set, TN, are each split into sub-sequences of a 
given length LEN, forming the Self-subsequence-set CS 

and Nonself-subsequence-set CN, which are viewed as the 
genotype space. The Self-pattern-set ES and Nonself-
pattern-set, EN, can be extracted from these subsequence 
sets by pattern-mining. The algorithm is as follows:



Algorithm 1: Abstract chromosome from Self or Nonself (taking Self as an example; dS as an individual in DS; right as 
the weight of dS, which reflects the frequency of dS’s repetitive appearance; RIGHT as a default weight.)
1) TS is cut into subsequences of length LEN, forming CS;
2) All elements in CS are ordered by Gray code to form DS;
3) RIGHT → dS.right;
4) Extract pattern to form pattern-set, ES ={0, 1, *}+, from DS: 

a) While there is a new pattern in DS;
If there is only one different digit between two adjacent patterns di and dj then,

Unite the two patterns into one new pattern eS, by replacing the different digit with symbol *, and di.right + 
dj.right → es.right, and put eS into set ES;

b) Repeat a) until there is no new pattern in ES

5) End.

(2) Negative selection, evolution with genetic algorithms
Antibodies, the set A, are created randomly as strings over {0,1,*}. Starting with this set A as an initial population, 

we apply an elitist genetic algorithm to generate a final population of antibodies; the best member of this the final 
population is chosen as a member of the “excellent antibody set” M. The process is repeated N times, to give a set of size 
N. The fitness function used is computed from the matching degree between antibodies and the Nonself-chromosome-set, 
and the dismatching degrees between antibodies and the Self-chromosome-set, with a weighting given by the weighting 
parameters x1 and x2. In this alogrithm, d_match_self() is a function to compute the degree of mismatch between the 
antibody and ES, match_nonself() is a function to compute the degree of match between antibody and EN, and the 
matching degree is proportionate to the the number of correct matchings with E. The Genetic algorithm uses Fitness 
Proportionate Selection, and Reproduction, Crossover and Mutation, with probabilities 0.75, 0.2, and 0.05, respectively. 
The elite size is ⅓. The algorithm can be written as follows:

Algorithm 2: Negative selection and Genetic Algorithm
1) Initialize an antibody population of size N:

A={a1,a2……an } (ai consists of 0, 1 and *);
2) Calculate the Fitness of each individual and its selection probability:

Fitnessi=d_match_self(ai) / x1 

+ match_nonself(ai) / x2

Pi=Fitnessi / (Fitness1 + Fitness2 + … + Fitnessi  + … + Fitnessn)
3) Select two antibodies aj and ak with probability proportionate to Pj and Pk and generate two novel antibodies aj΄ 

and ak΄ by genetic operators.
4) Repeat 3) N/2 times and generate a new antibody population A΄={a1΄, a2΄... an΄};
5) Select best ⅓ individuals from A and ⅔ individuals from A΄ to form a new antibody population A˝.
6) Repeat from 2) to 5) T times and find antibody mi , which has the highest value of Fitness, from A˝;
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7) Repeat from 1) to 6) N times and generate an excellent antibody population as :
M={ m1,m2……mn };

8) End.

(3) Evaluation System and Phenotype Space
In order to evaluate the object being checked, we should firstly look for an evaluation function B(X) and threshold 

values. In this paper a simple evaluation function is adopted to map the object to a space of [0,1]. TS and TN are used to 
confirm the threshold values, such as α and β, which meet that B(tS) <α and B(tN) >β. (tS is an unit of TS and tN is an unit 
of TN). The evaluation algrithm with B(X) is written as follows:

Algorithm 3: Evaluation Algorithm
1) Code the object being checked into binary sequence X;
2) Get the excellent Nonself-chromosome-set from Algorithm 2:

M={m1, m2 …… mn};
3) Calculate the evaluation fuction: 1

B( X )=∑
i=1

n f i

∑
j=1

n

f j

xi  ;

4) If B(X)<α, X is a normal activity. If B(X)>β, X is an intrusion and alarm will be raised. If α<B(X)<β, X is an 
ambiguous activity (If X is an ambiguous activity, artificial arbitration is needed) ;

5) End.

A chromosome sequence of the object being checked matches that of some units in the excellent Nonself-
chromosome-set when the object is evaluated as an intrusion by B(X). This means that some common features exist in 
their phenotype spaces. The simple evaluation function mentioned above is called a chromosome model or an "affinity" 
model. 

Examining the antigen by evaluation function is equivalent to appraising antigen by chromosome sequence. The 
antigen is confirmed as intrusion whenever some gene signatures of the antigen, which are considered as a chromosome 
sequence, are similar to that of an antibody. The union of the chromosome sequences is called the phenotype space.

4 Experiment Analysis

4.1 Experimental Data
We generate training sets and testing sets by a stochastic algorithm so as to obtain a range of experimental data. A control 
experiment is carried out by using different sizes of training and testing sets. 103 or 104 for training and 103 or 6×103 for 
testing. The training set is divided into genes of length 25 digits, i.e. LEN=25. A further control experiment compares the 
inclusion and omission of pattern mining from the algorithm. The number of generations is 300, i.e. T=300. The size of 
M is 46, i.e. N=46. The detailed data are shown in Table 1 and Table 2 (TP means the True Positive rate; N-test-set and S-
test-set mean the nonself and self training sets respectively; the table gives the mean values over 10 trials, followed by 
their standard deviations.):
Table 1.  Self-training-set and Nonself-training-set of size 104. 

Table 2.  Self-training-set and Nonself-training-set of size 103. 

11. If mi does not exist in X, then xi=0, otherwise xi=1. fi is the fitness value of mi , which can be calculated by formula metioned in 
Algorithm 2.

Exp. 1 Total 
num

First(pattern mining) Second(No pattern mining)
Detected Unsure TP(%) Detected Unsure TP(%)

N-test-set 6000 5318
127

234
9

88.6
2.1

4827
 126

650
16

80.5 
 2.1

S-test-set 6000 00 21 00 00 72 00
length of gene: 25  number of M: 46  Evolutionary generation (T): 300

Exp. 2 Total 
num

First( pattern mining) Second(No pattern mining)
Detected Unsure TP(%) Detected Unsure TP(%)

N-test-set 1000 808
34

105
15

80.8
3.4

755
47

153
 18

75.5
4.7

S-test-set 1000 00 11 00 00 42 00
length of gene: 25  number of M: 46  Evolutionary generation (T): 300



4.2 Experimental Results
The results of of these experiments can be compared with the results of similar experiments of (Forrest and Perelson 
1994). As in our experiments, they generated random binary sequences to carry out the experiments. Unlike our work, 
they used a common negative selection algorithm to produce detectors, and an r-contiguous linear conformation 
algorithm to detect intrusions. Moreover the evaluation mechanism used by Forrest differs from that proposed in this 
paper. Table 3 compares the results of the two experiments.

Contrastive Results R-contiguous Exp 

by Forrest

Exp. 1

in this paper

Size of N-test-set 128 104

Number of Detectors 46 46

TP 84.3% 88.6%

Coverage Rate 2.3 192.7

Table 3.  Comparative results between Forrest’s experiment and Experiment 1 with pattern mining. Coverage Rate means the average 
number of intrusions detected by each detector.

From the table, our approach in experiment 1 achieves a recognition rate of 88.6% compared to 84.3% in the r-
contiguous experiment. Forrest’s paper does not quote a standard deviation, so it is not possible to conduct a significance 
test on these resulluts; however the fact that the difference of the means is more than double the standard deviation in our 
experiments is highly suggestive of significance. Equally important, Forrest and Perelson’s approach covers 128 objects 
with 46 detectors, giving an average number of intrusions detected per detector of 2.3; by comparison, our approach 
covers 104 objects with 46 detectors, giving an average number of intrusions detected per detector of 192.7. So the 
detectors produced by our chromosome-based model have far higher coverage. In operational CDIS systems, distribution 
and execution of detectors will impose significant communications and computational loads. The distribution cost is 
proportional to the number of detectors, as is the computational cost of detection. Hence it is better to have a few 
powerful detectors rather than many detectors with narrow scope.

When we consider the results of experiments 1 and 2 in this paper, we may note the following behaviours:

 Zero false positive rate and lower false negative rate
In the experiments, the recognition rate on the self-testing-set is zero, i.e. there is a zero false positive rate. This means 
that the system will give no false alarms. Moreover if we compute the definite errors from the table (i.e. where the system 
fails to recognise nonself objects), the inclusion of pattern mining reduces the false negative rates of 8.7% and 9.2% to 
7.5% and 8.7% respectively. As a result , the system rarely mistakes unknown Nonself objects as known normal 
activities.

 Antibody pattern has higher recognition rate
The recognition of definite nonself objects is considerably higher when pattern mining is used – 8.1% higher in 
Experiment 1, and 5.3% in Experiment 2.  That is, the antibody-pattern-set has a higher recognition rate and a larger 
coverage area when pattern mining is used. These differences are significant at the 1% significance level (hetero-
scedastic one-tailed Student’s T-test).

 Effect on model from training-set size 
Experiment 1 uses a training set of size 104, compared with 103 in experiment 2. Comparing the results between 
experment 1 and experiment 2, we see an increase in detection rate of 5% with no pattern mining , and 7.8% with pattern 
mining . That is, the immune model is increasingly effective as the size of the training set increases.

5 Conclusions

This paper proposes a new conception of immune chromosomes derived from research on the CDIS antibody lifecycle. 
We make  several suggestions to improve CDIS, notably the use of bi-directional negative selection to produce 
representational antibodies, the use of genetic algorithms to optimize distinctive antibodies, and the use of a simple 
evaluation function to do a quantitative analysis of cooperative detection. These approaches are used here to look for a 



high-affinity chromosome model. The relationship between genotype space and phenotype space is generated by the 
evaluation system. Our experimental data have suggested that :
 The chromosome-based evaluation model has high feasibility and immunity, improving the successful prediction rate 

in intrusion detection system.
 Our process generates vastly more powerful detectors than comparable methods, hence requires dramatically fewer 

of them. In practical terms, this means that CDIS systems based on this approach will impose significantly lower 
resource requirements, both computational and communications.

In future work, we will further examine the chromosome model. In particular, we plan to investigate more complex 
methods for the evaluation system, such as Evolutionary Modeling or multi-level evaluation. Rather than repeated 
applications of a Genetic Algorithm to generate the excellent antibody set, we plan to use diversity mechanisms so that 
the elite members of the final GA population can be directly used as the excellent antibody set. We also plan to trial the 
system in a real-World environment, testing system call sequences (Hofmeyr et al, 1998), and to measure its comparative 
resource requirements in a realistic system-protection setting.
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