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Abstract—We investigate interactions between evolution, de-
velopment and lifelong layered learning in a combination we
call Evolutionary Developmental Evaluation (EDE), using a
specific implementation, Developmental Tree-Adjoining Gram-
mar Guided GP (DTAG3P). The approach is consistent with
the process of biological evolution and development in higher
animals and plants, and is justifiable from the perspective of
learning theory. In experiments, the combination is synergistic,
out-performing algorithms using only some of these mechanisms.
It is able to solve GP problems that lie well beyond the scaling
capabilities of standard GP. The solutions it finds are simple,
succinct, and highly structured. We conclude the paper witha
number of proposals for further extension of EDE systems.

Index Terms—Genetic programming, developmental, evalua-
tion, structural, regularity, modularity, incremental ev olution,
layered learning

I. I NTRODUCTION

EVOLUTIONARY Developmental Systems (EDS) [1] are
powerful methods for generating flexible solutions to

complex problems. We examine their combination with lay-
ered learning strategies, showing that the resulting combina-
tion is both biologically plausible and computationally pow-
erful, generating structured and scalable solutions to difficult
function-learning problems.

Evolutionary Computation (EC) is based on analogy be-
tween computational and biological systems. The analogy is
rooted in the insight of Charles Darwin [2] that variation
and natural selection can together explain the vast varietyof
species we see in the natural world.

Any analogy depends on an abstraction, ignoring aspects
that are unimportant to the target. The core problem is to
determine which aspects are inessential. In the case of EC,
it is clear that we have not yet captured important elements of
biological evolutionary systems. We cannot evolve an artificial
system with the intellectual performance and effectiveness of
a human – or even a fly. Some aspects of biological evolution
may be important to the performance of any evolutionary sys-
tem, whether natural or artificial. Others may be specific to the
requirements of DNA and protein chemistry, the requirements
of survival in a 3-dimensional world, and so forth. Identifying
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the former, and especially, finding synergies between them,is
an important task in progressing EC.

We concentrate on four aspects of evolutionary development
in complex organisms: an underlying evolutionary mechanism,
a developmental mechanism, multiple evaluations throughout
development, and layered learning of increasingly complex
problems. Implementing them in a Genetic Programming (GP)
system, we investigate their performance, in particular inves-
tigating whether they interact synergistically to solve more
complex problems than the individual components can handle.
The system, DTAG3P, is based on TAG3P, a grammar-guided
GP system using Tree Adjoining Grammars (TAG) [3].

In Section II, we discuss the interaction of evolution and
development, both in biological systems and in previous work
on artificial systems, at the same time introducing the idea
of layered learning. Section III introduces the general issue
of structure and regularity in both artificial and biological
systems, and its relationship to evolution and development,
and especially to their interaction. Section IV introducessome
necessary technical background in L-systems, TAG grammars
and grammar-based GP, together with a brief introduction to
compression and its relevance to measuring complexity and
regularity. Section V details the DTAG3P system which is
the subject of this paper. The experimental approach which
we used to validate some of the ideas, and the problem
families we used, are outlined in Section VI, with Section VII
detailing the relative performance of the different systems in
solving these problems. Section VIII looks in more detail atthe
results, and in particular at the simplicity and regularityof the
solutions that are found. We examine the overall capabilities
of the DTAG3P system, and the assumptions and limitations
of the current stage of this work, in Section IX, leading into
a discussion of some of the future research that can follow.
We round out the paper in Section X with a summary of the
results, and overall conclusions that can be drawn.

II. EVOLUTIONARY DEVELOPMENTAL SYSTEMS

The best-known EC variants [4]–[6] assume an identity
or direct matching between phenotype and genotype, corre-
sponding to a posited RNA world, that occured very early in
the evolution of life [7]. More recent variants provide for a
genotype-phenotype mapping [8]–[10], corresponding to the
decoding of DNA to protein in simple unicellular organisms.

While unicellular organisms can optimise themselves for a
complex world, they attain only a bounded complexity; the
complex individuals of today’s biology only began to emerge
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once multicellular organisms with developmental mechanisms
arose. This insight led early researchers such as Kitano [11]
and Gruau [12] to propose evolutionary developmental systems
(EDS), in which the genotype codes for a process through
which the phenotype emerges. This parallels the way DNA
instructions define the growth pattern of an organism. In most
such systems, an important contributor to complexity is the
context dependence of the interpretation of the genotype. The
same genotype component may generate different phenotypic
components depending on its history and context, just as the
expression of a particular gene in an organism may depend on
its cellular history and context.

A variety of representations have been used for EDS, many
based either on Lindenmayer systems (L-systems [13]–[15])
or on cellular automata (CAs [16]), but with many other
variants [17], [18].

EDS have been conspicuously successful, generating a wide
variety of research, enough to form a separate track in recent
GECCO conferences. However development is a complex
process, and its interaction both with evolution and with
the external environment is even more so. A wide range of
systems have been built, incorporating different aspects of
these interactions.

A. The Interaction between Evaluation and Development

We are specifically interested in how the developmental
process interacts with evolutionary fitness evaluation. Many
EDSs [11], [12], [14], [15], [19]–[22], that emphasise other
aspects, have a relatively simple model for this. Individual
genotypes are generated through normal evolutionary pro-
cesses, the resulting genotype is then grown through its devel-
opmental processes, and the developed phenotype is evaluated
through its environment. This is a reasonable abstraction,but
it leaves out an obvious aspect of biological developmental
systems, that the phenotype is not evaluated just once, but
rather continuously throughout development: there is no point
in having the genes required for an olympic athlete if one does
not survive the embryonic stage.

A wide range of other EDS do evaluate the fitness of
individuals during development. In some, the evaluation isof
the same problem, repeatedly re-evaluated. Viswanathan and
Pollack [23] demonstrated that evaluation during development
could speed up evolution on a single problem, by using good
solutions found at earlier stages of development. Miller and
Banzhaf [24] guided their system to evolve and develop flags
and Boolean circuits by repeatedly presenting the desired
fitness function during the process of development. McPhee
et al.’s IFD N-Gram GP system [25] goes one step further,
using repeated evaluation of the fitness function not only to
evaluate the fitness, but also to impose environmental feedback
on the developmental process.

In biology the fitness function changes during the lifetime
of an individual. In simpler cases, the change is random, or
results from coevolution. This has commonly been simulated
in artificial worlds such as Tierra [26].

Jung’s [27] topological model for neural network develop-
ment is repeatedly evaluated during the creature’s development

through predator-prey interactions. Kowaliw and Banzhaf’s
angiogenetic system [28] incorporates local evaluation ofthe
circulatory system during the process of development. In a
practical application, Tufte and Haddow [29], [30] investigated
the structures and functionalities that could be achieved by
FPGA-based developmental systems, evolved on a single
problem but then generalised to other problems.

Although not usually viewed as an EDS, Stoffel and Spec-
tor’s ontogenetic programming [31] also sees a varying fitness
function during the course of its development/execution.

The idea of program execution as development has been
taken much further in Harding et al.’s SMGGP [32]. Again, the
program’s self-modification throughout the course of develop-
ment effectively changes the fitness landscape. Interestingly,
SMGGP has been applied to Boolean parity problems [33]
similar to those reported here, though differences in the
function sets make it difficult to compare directly. Howeverit
is apparent that both developmental systems show substantially
increased performance when compared to non-developmental
systems.

In many animals, and most plants, that is all there is to it: the
new organism is seeded into its environment, and has to grow
through all stages in that environment. However it is notewor-
thy that across the various phyla of higher animals, a further
behaviour has arisen multiple times in unrelated phyla: control
of the environment by the parents, so as to provide the child
with a staged series of environmental challenges, increasing
in complexity as the child matures. Some hints that this might
not be accidental can be seen in the gradual evolution of the
complexity of this staging, from the simple protection of fish
eggs by their parents in some species, through the intricate
brooding mechanisms of many bird species, to the complex
gestational and parental care mechanisms of mammals.

This staged exposure to more complex environments may
play another role. Each stage of development must be well
enough adapted to its corresponding environment to survive,
but also be sufficiently flexible to generalise to the next
environment at the next stage. An organism which overfits
to the problem at one stage will find it difficult to adapt later,
and so will be out-competed by individuals that, while solving
the previous environment well enough, are adaptable to future
environments. In accordance with parsimony theory from
machine learning (see [34], ch. 7), this leads to preferential
selection of more simply structured individuals, and also to
control of runaway expansion in genotypic complexity.

B. Layered Learning

Incremental learning problems are well-known in machine
learning; the earliest reference we know is in de Garis’ work
on evolving neural controllers for robot locomotion [35], but
is better known through Stone and Veloso’s work on layered
learning [36]: a series of problems are presented to a learner,
in an order which allows the solution of one to assist with the
next.

Layered learning has a long history in non-developmental
EC [37]–[39]. In these systems, problems are presented in
order to the evolutionary system, and the population at the end
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of each round of learning is used to seed the initial population
for the next layer.

In EDS, layered learning has been used in the work of
Bolouri et al. [40], in gradually building up the task complexity
(in this case, neural visual processing) by evolving first for
a simple task, then for incrementally more complex tasks.
In these systems, the layered problems interact with the
evolutionary system in the same way as in non-developmental
systems; there is no direct interaction between the layered
learning problems and the developmental process.

However this differs from our focus. In this work, we
more directly analogise parental control of the developmental
environment. That is, the layered learning stages are presented,
not to the system as a whole, but to each individual dur-
ing development, one layer per developmental stage. If the
individual is uncompetitive at one layer/stage, it does not
get to progress to later ones. We implement this through an
incremental tournament selection mechanism that we detailin
Subsection V-C.

Sekanina and Bidlo’s system [41] is close to this in spirit, in
emphasising the interplay of evolutionary and developmental
dynamics. However they use an additive fitness function over
the fitnesses at each stage of development, so that good fitness
at a later stage in development can compensate for poor fitness
at an earlier stage, thus reducing the evolutionary pressure to
produce generalised individuals. A similar approach is taken
by Krohn et al. [42] in using an additive fitness in a fractal
protein developmental system to approximate the digits ofπ.

1) Are Biological Problems Really Layered?:It is impor-
tant to clarify exactly what we are claiming about biology
in pursuing this analogy. We do not claim that the complexity
of biological developmental processes increases monotonically
throughout development. Far from it. Angiogenesis, as studied
by Kowaliw and Banzhaf [28], provides a clear example.
Angiogenesis starts off slowly during development, then grad-
ually speeds up – but reaches a peak sometime during child-
hood, then tails off. Kowaliw and Banzhaf’s results suggest
that the later stages may be governed by local search rather
than genetic control, so that from the control perspective,the
peak of complexity may come even earlier.

This is not in conflict with our claim, which is that the
complexity of the fitness evaluation at these stages increases
monotonically (or nearly so) – for respiration and circulation
as for everything else, at least during the evolutionarily-
relevant period up to reproductive maturity. Initially, there is no
respiratory problem for the developing embryo – it can handle
all respiration through diffusion. By day 22, the embryo has
a complex beating heart. But it does not need it. Substantially
larger animals than the 4mm embryo can survive perfectly
well without one – even in the absence of a free supply of
richly-oxygenated maternal blood. The embryo has a heart at
day 22, not because it needs it then – it will not die then if
it fails to beat – but because it will need it later and day
22 is an appropriate stage to develop it. This requirement
is imposed, not by the day-22 fitness evaluation, but by
fitness evaluations much later in the development process. The
respiratory requirements themselves do change monotonically
(and at birth, in a quite large step) throughout development.

C. Requirements for Evolutionary Developmental Evaluation

To fully model these aspects of biological evolution, a
number of components are required:

1) Developmental process governed by ‘genes’: The under-
lying genotypic representation should support both an
evolutionary process (that is, it must be evolvable) and
a developmental process (that is, it must incorporate a
developmental process controlled by the genes).

2) Developmental evaluation: It should be feasible to eval-
uate the representation yielded by the developmental
process at each stage of development.

3) Layered learning: The complexity of the problems han-
dled should increase throughout development.

4) Evaluation in sequence: The evaluation should be biased
toward earlier stages. The more difficult problems are
evaluated sequentially during the developmental process.

In some of the experiments we describe below, we make use
of two further abstractions from biology:

5) Adaptive variation rates: Good building blocks found at
earlier evolutionary – and hence developmental – stages
should be subject to reduced evolutionary pressure at
later stages (leading to the effect sometimes referred to
in biology as ”ontogeny recapitulates phylogeny” – that
is, embryological development to some extent parallels
evolutionary development).

6) Varying semantics during development: Mechanisms are
needed for genotypic elements to generate different
phenotypic effects at different stages of development.

D. Implementations

We introduced a version of the above mechanisms in [43];
however that system involved a trivial development process.
A version similar to that presented here, but with more
rudimentary mechanisms for controlling the developmental
process through meta structures, was presented in [44].

III. R EGULARITY IN EVOLUTIONARY SYSTEMS

We alluded earlier to a hypothesis that a staged interaction
between evaluation and development may impose general-
isation pressures on evolution, and thus can then lead to
more regularly-structured individuals than would arise innon-
developmental systems. We introduce here some of what is
known about the growth in complexity and/or regularity in
both artificial and biological evolutionary systems.

Individual complexity has been most heavily studied in
genetic programming (GP), developed by Koza, Cramer and
others [6], [45] with the intention of automatically solving
problems using computers. Based on observations of bio-
logical systems, GP uses an abstraction of Darwin’s natural
selection mechanisms to evolve populations of solutions to
problems.

A core problem in GP research is the phenomenon of bloat:
GP generates solutions with large amounts of irregular and
unnecessary code, that dramatically increases over time, and
is not proportionate to any increase in the quality of solutions.
Initially, the analogy was drawn with biological systems. For
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example, the human genome uses less than 5% of its3.2∗109

amino acid codons (ACTG) to encode proteins. At first, the
remainder was thought to be largely non-functional [46], and
in this way analogous to some forms of GP bloat.

However this analogy is doubtful on a number of grounds. It
has become apparent since the original decoding of the human
genome that the situation is more complex than originally
thought. Substantial portions of the genome code for useful
RNA, and are under active selection pressure [47], [48].
In addition, the growth of the biological genome does not
resemble that of GP. In the2 ∗ 109 years of eukaryotic
evolution, the genome size has fluctuated widely, by up to five
orders of magnitude, but there is no evidence whatever of any
trend toward increasing growth [49]. There is currently only
limited understanding of the drivers of biological genome size,
or even whether it is under active selective pressure [ibid], but
there can be no doubt that it bears little resemblance to code
bloat in GP.

Bloat in GP results in irregularly-structured solutions, and
this in turn leads to difficulties in scalability. Biological geno-
types are also fairly irregular and not too compressible [50].
However when one comes to the higher-level effective code,
the parts of the genome that are subject to selection, it is
apparent that regularity and structure abound, as epitomised
by the homeobox genes that control segment development in
all bilateral animals [51], [52]. Their typical arrangement in the
genome directly reflects their phenotypic effect on segments,
with genes occurring along the chromosome in the same order
as the segments whose phenotype they control [53]. In this
regular structure, they differ very greatly from the genotypes
that arise in GP.

A. Regularity and Modularity

The termsFunctional modularityand Structure regularity
were first introduced to evolutionary computation by De
Jong [54]. Around the same time, Woodward [55] explained
a module as “a function that is defined in terms of a primitive
set or previously defined modules”. Lipson subsequently [56],
[57] defined functional modularity as the “structural localisa-
tion of function” and structure regularity as “the compressibil-
ity of the description of the structure” or “the correlationof
patterns within an individual, such as symmetry, repetition and
self-similarity, allowing evolution to specify increasingly ex-
tensive structures while maintaining short description lengths”.
Lipson argued that the terms modularity and regularity are
often confused in the literature through the notion of re-use.
Indeed, useful modularity can be repeated at higher stages
of the development as good building blocks. Also, structural
regularity appearing with a repetition of a pattern could be
understood as functional modularity.

In Computer Science, ”modularity” connotes encapsulation
and re-use. In biology, it seems to be used more broadly, and
is often applied to repetitions of patterns where no mechanism
for re-use is proposed. For these reasons, the term can readily
cause confusion. Since in this paper we are primarily interested
in the repetition and variation of sub-structures (in GP terms,
re-use of building blocks), we try to avoid such confusion by
using the term ‘regularity’ wherever possible.

It has been argued (e.g. by Lehre [58]) that the emergence
of regular structures requires a developmental process. Itis
possible that this emergence may be further enhanced by
the generalisation pressures imposed by repeated evaluation
during development. Testing this is an important focus of the
experimental work reported here.

B. Regularity in Evolutionary Developmental Biology

How important and widespread is the development of reg-
ularity in evolutionary biology? Examination of nature shows
that regularity and modularity have repeatedly evolved.

In this subsection, we first cover some background in
Evolutionary Developmental Biology (Evo-Devo). We then
discuss how regularity and modularity of structure arise in
genomes.

1) Evolutionary Developmental Biology (Evo-Devo):Evo-
lutionary developmental biology, often informally known by
the term “Evo-Devo”, is the study of the relationship between
evolution and development. It is an old area of study, first
investigated in the now somewhat overshadowed and discred-
ited work of Haeckel [59]. It was however, resurrected and
put on a sound scientific footing by Gould in “Ontogeny and
Phylogeny”, 1977 [60], with an emphasis on the importance of
heterochrony (developmental change in time) “as a mechanism
for evolutionary change” [61]. Lewis in 1978 proposed the
general field of “Evo-Devo”, stemming from the discovery of
homeobox (Hox) genes, in particular the homeotic genes Ubx
and abd-A and their role in inhibiting abdominal appendage
formation in insects [62].

Biologists use the concept of Evo-Devo to understand
morphological structures. Morphological changes in evolution
generally result from developmental changes. Thus we need
to understand developmental evolution in order to understand
morphological evolution. For example, the diversity ofUbx
binding sites (gain or loss) in thecis-regulatory region drives
the diversification/distinction of butterfly hindwing patterns
and of insect Hox-independent forewing patterns [63], see
Figure III-B1.1

Evo-Devo opens the ‘black box’ to reveal the causes of
the great variations in morphology of complex animals. Many
genes controlling morphological development have now been
identified, and the role of changes in these genes in driving
phenotypic change between species is now being unravelled.
As Carroll put it, “all complex animals – flies and fly catchers,
dinosaurs and trilobites, butterflies and zebras and humans–
all share a common ‘toolkit’ of ‘master’ genes that govern the
formation and patterning of their bodies and body parts” [64].

Research in Evo-Devo has provided strong confirmation
that regularity and modularity are essential for evolutionary
development [53], [65]–[67].

2) Regularity and Structure in Biological Organisms:For
simpler organisms, there is strong evidence of evolutionary
pressure for compressed and regular genotypes (see, for ex-
ample, [68]). In the current state of knowledge, evidence for
gross regularity in the genome of higher organisms is harder
to find. Despite perhaps 20 years of research, the best current

1Reproduced by kind permission of the author.
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Fig. 1. Hox Genes and Divergence of Morphological Structures [63].1

compression achieved for whole eukaryotic genomes is a little
over 1.5 bit per base [69], i.e. a compression ratio no better
than 0.375. It may be that eukaryotic non-coding regions are
not under selective pressure for regularity, or perhaps we
have simply not yet identified the structure of this regular-
ity. Nevertheless, there is indirect evidence that regularity is
useful for eukaryotic organisms, and that mechanisms have
arisen to promote it: the widespread emergence of duplication
mechanisms. Repetition of regular structures in biological
organisms has increased through repeated duplications on
many scales. The mechanisms involved in these processes are
quite different, suggesting that repetition may not be merely
accidental, but selected for. We briefly review a few, to draw
out how important these mechanisms are to evolution.

a) Genome Duplication:Whole or part genome du-
plication is common across the biological kingdoms. The
yeast genus Saccharomyces, has experienced a whole genome
duplication [70]. In plants, it occurs sufficiently often that new
terms (tetraploidy, polyploidy) have been defined to describe
it [71]. The entire animal genome has been duplicated at least
twice prior to the split between tetrapods and fish [72] – and
once again in the main fish lineage.

b) Gene Duplication:Ohno [73] argued that gene-level
duplication is a key evolutionary driver. A duplicated gene
sees reduced selective pressure, releasing it from some of mu-
tation’s disadvantages. Genes often fulfil multiple functions.
Once a gene has been duplicated, both copies are free to
specialise on some of the functions, without risk of loss of
function.

Gu [74] found that yeasts with mutations in a single copy
of a gene grew slower than did those with mutations occurring
in one copy of a duplicated gene. By these mechanisms, gene
duplication can establish sophisticated expression regulation.
For example, the original green-sensitive opsin of the primate
ancestors has split into two separate opsins with different(red
and green) sensitivities in hominoids and old-world monkeys,
resulting in their much improved color vision [75].

In Drosophila melanogaster, an ancestral gene,janusA

had various roles, encoding two slightly different proteins in
multiple tissues of both sexes, and in sperm (Figure 2). After
more than 35 million years, a duplicate ofjanusAmutated to
janusB, which specialised to encode a sperm-specific protein.
During the next 15 million years,janusB generated another
variant after duplication,ocnus, which specialised to encode
another sperm-specific protein.

Fig. 2. An Example of Gene Duplication [76].1

c) Segmental duplication:Segmental duplication is de-
rived from the repeated transpositions of small portions of
chromosomes. Perhaps the best-known are the Alu elements,
∼ 300 bp segments derived from the 7SL RNA gene, which
appeared shortly after the evolution of the primates,∼ 65
mya [77]. While their overall function is unknown, there are
around 1.4 million in the human genome, occupying∼ 10% of
the total genome (greatly outweighing genes). New insertions
occur around every 200 births. Another 20 kbp segment [78]
of chromosome 16, LCR16a, has generated 15-30 copies in
a 15 Mb section of the short arm of human and chimpanzee
chromosome 16 (between 12 and 5 milion years ago).

C. Developmental Control

The biological developmental process is highly complex,
incorporating both feedback within the developmental system
itself, through complex control structures [79], and feedback
from the environment. These feedback mechanisms are im-
portant, and finding suitable abstractions for them in EDS isa
high priority [25], [28]. One important consequence of these
control systems is that the developmental stage is implicitly
available to the developmental process as one of its inputs.
In this work, we provide a very crude abstraction through the
’meta’ mechanisms we describe later.

IV. T ECHNICAL BACKGROUND

In this section, we introduce some of the tools that have
been used to build a system meeting the requirements from
section II. The main components are Lindenmayer systems
(L-systems) and Tree Adjoining Grammars (TAGs).

A. D0L-Systems and Development

L-Systems were introduced by Lindenmayer in 1968 [13],
using the central concept of a rewriting mechanism to simulate



TRANSACTIONS ON EVOLUTIONARY COMPUTATION CLASS FILES, VOL. ?, NO. ?, ? 2010 6

the developmental processes of natural organisms. They are
closely related to Chomsky grammars [80], the essential dif-
ference lying in the method of applying productions. In Chom-
sky grammars, productions are applied non-deterministically,
whereas in simple L-systems they are applied in parallel,
to simultaneously replace all letters in a given word. This
difference reflects the biological motivation of L-systems, pro-
viding a commonly used formalism to describe developmental
processes of natural organisms. A deterministic and context-
free L-system, also known as a Deterministic L-system with
0-interactions (D0L-system), is the simplest type of L-system.
In these deterministic systems, exactly one production applies
to any symbol of the L-system alphabet, and the productions
are also context-free. The formal definitions describing a D0L-
system and its operations are given below. A D0L-system [13]
is an ordered tripletG = (V, ω, P ) where:

• V is the alphabet of the system,V ∗ the set of all words
overV .

• ω ∈ V ∗ is a nonempty word called theaxiom.
• P ⊂ V × V ∗ is a finiteset of productions. A production

(p, s) ∈ P is written p→ s; p ands are thepredecessor
andsuccessorof this production.

• Whenever there is no explicit mapping for a symbolp,
the identity mappingp→ p is assumed.

• There is at most one production rule for each symbol
p ∈ V .

Let p = p1p2...pm be an arbitrary word overV . The word
s = s1s2...sm ∈ V ∗ is directly derived fromp, denotedp⇒ s,
iff pi → si for all i ∈ {1 . . .m}. If there is adevelopmental
sequencep0, p1, . . . , pn with p0 = ω, pn = s, and p0 ⇒
p1 . . . ⇒ pn, we say thatG generatess in a derivation of
lengthn.

In short, D0L-systems operate on sequences of symbols
calledstringsor words. In a singlederivation step, each letter
in the predecessor string is replaced by its successor using
the applicable production from the production set P. The
developmental processis simulated as a sequence of such
derivation steps, beginning with a given initial string, called
the axiom, and denotedω.

An example of a D0L-system is shown as in Figure 3 at
three stages of development. The developmental process is
generated by the D0L-systemG = (V, ω, P ) with alphabet
V = (S,A,B,C, x, y, z), axiom ω = S, and the production
setP given by:

• P1 : S → xAB
• P2 : A→ yBzB
• P3 : B → xCzx
• P4 : C → A

Fig. 3. An Example of D0L-system

B. Tree Adjoining Grammars and TAG3P

Tree Adjoining Grammars were introduced by Joshi [81]
to overcome some perceived problems with Context Free
Grammars (CFGs) for representing natural language. They are
based on the insight, that a sentence such as ‘The big black
cat sat licking its paws on the plush, comfortable mat, which
it had commandeered’ may be analysed as a basic sentence
(a so-calledα-tree) ‘The cat sat on the mat’, into which
insertable elements (β-trees – ‘big’, ‘black’, ‘licking its paws’,
‘plush’, ‘comfortable’, ‘which it had commandeered’) have
been inserted (adjoined) at grammatically-appropriate places
– and that these basic and insertable elements can themselves
be further decomposed in the same way. TAG representation
then consists of a tree recording the insertions and substitutions
of new components into the so-far-constructed sentence. TAG
grammars can just as readily be built for arithmetic or other
expressions as for sentences (TAG grammars subsume CFGs:
every CFG can be represented as a TAG). The representation
has many advantages, both for natural language processing
and for GP, but in this context the key advantage is one of
completeness: any rooted subtree of a TAG tree represents
a complete individual which can be immediately evaluated
(‘The cat sat on the mat’, ‘The black cat sat on the mat’,
‘The big, black cat sat on the mat’, ...). In this work, for
technical reasons, we use lexicalised TAGs (TAGs in which
every elementary tree has at least one lexical element on its
frontier).

The use of TAG representation to encode expressions, and
more specifically as a GP representation, is described in detail
in Nguyen et al. 2006 [3]. For convenience, we reprise from
that paper the formal definition of a tree adjoining grammar:

A tree adjoining grammar is a tree-rewriting system
consisting of a quintupleT = (

∑
, N, I, A, S), where:

1)
∑

is a finite set of terminal symbols.

2) N is a finite set of non-terminal symbols:N ∩
∑

= ∅.

3) S is a distinguished non-terminal symbol:S ∈ N .

4) I is a finite set of finite trees, called initial trees (or
α-trees).
In an initial tree, all interior nodes are labeled by
non-terminal symbols, while the nodes on the frontier
are labeled either by terminal or non-terminal symbols.
Non-terminal symbols on the frontier of an initial tree
are marked with↓ (for substitution).

5) A is a finite set of finite trees, called auxiliary trees (or
β-trees).
In an auxiliary tree, all internal nodes are labeled by non-
terminal symbols, and a node on the frontier is labeled
either by a terminal or non-terminal symbol. The frontier
must contain a distinguished and unique node, the foot
node, labeled by the same non-terminal symbol as the
tree’s root node, and marked with an asterisk (*); other
nodes on the frontier labeled by non-terminal symbols
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are marked with↓ (for substitution).

The trees inE = I ∪ A are called elementary trees. Initial
trees and auxiliary trees are denotedα andβ respectively. A
tree with its root labeled by a non-terminal symbol X is called
an X-type elementary tree.

In essence, anα-tree with all terminal symbols on its
frontier is just like a minimal complete sentence, while aβ-
tree is a minimal recursive structure used to modify complete
sentences.

Tree Adjoining Grammar Guided Genetic Programming
(TAG3P) – the system on which DTAG3P is based – is a typi-
cal grammar guided GP system, with the sole exception of the
use of TAG derivation trees, rather than CFG derivation trees,
as the individual program evolutionary representation [3].

C. Measuring regularity in Evolutionary Computation

Much EC research has aimed to generate modular, regular
solutions [14], [44], [82]–[85]. However developing a metric
to measure regularity and modularity, and hence to objectively
compare the effectiveness of different mechanisms in promot-
ing regularity and modularity, has only rarely been attempted.
Hornby recently developed such metrics [86], [87], but as-
sumed an explicit and specific representation of modularity
(the computer science perspective), which is poorly suitedto
measuring emergent regularity (the biological view). We use
an alternative based on compression.

Individuals with structural regularity have a repeated sub-
structure or pattern; hence they should be more compressible.
Thus measuring compressibility provides one way to implicitly
measure specific kinds of modularity (those that correspondto
the coder’s assumptions) [88].

Data compression is the process of encoding data using
fewer bits than the unencoded raw data. Compression algo-
rithms include two components: themodel and thecoder.
The model captures the probability distribution of the original
data by discovering regularities in its structure. The coder
takes advantage of the resulting probability biases to generate
efficient coding of the same data.

Our data consists of GP trees generated from a variety
of GP systems. Thus we use a tree compression algorithm,
XMLPPM [89], which is an extension of the Predict by Partial
Match (PPM) model [90] to the compression of trees.

In GP, code bloat is almost inevitable [6], [91]–[93]. In
Figure 4 we see an example (a), which may be replaced by
a smaller tree (b) with identical evaluation. Ineffective code
may incorporate a large amount of repeated code, hence it may
change the compression ratio of the tree. Thus any regularity
metrics should measure the compressibility, not only of the
whole solution genotype tree, but also of the effective part.
This requires reliable methods of eliminating ineffectivecode.

To find the effective code, we use ‘equivalent decision
simplification’ (EDS) [88] to convert a tree into an equivalent
smaller tree. EDS determines the equivalence of code segments
by semantic checking, testing whether they are equivalent over
a set of fitness cases, in place of the (necessarily incom-
plete) pre-determined sets of rules used in syntactic simpli-
fication [94]–[96]. This semantics-based approach has been

Fig. 4. GP Code Bloat Example (a) and its Simplification (b)

shown [88] to generate substantially greater simplification than
the more commonly-used syntactic simplification.

V. THE DTAG3P SYSTEM

DTAG3P is the core system in this work. It is built on
the earlier non-developmental TAG3P system, in which TAG
grammar trees act as genotypes, and are transformed in turn
into CFG trees and then expression trees for evaluation. This
seemingly complex transformation is used for good reason:
TAG trees have important properties absent from CFG and ex-
pression trees. In this context, the most important is feasibility.
CFG and expression trees are difficult to use in developmental
systems, because it is difficult to extend them while retaining
validity (which probably explains why few, if any, develop-
mental systems use classic tree-based GP representations).
TAG trees don’t have this problem. Any legal extension of
a valid TAG tree, will generate a new valid TAG tree. Thus
they form an ideal substrate for a developmental tree-based
GP. However if TAG trees are to form the developmental
framework, we still need a genotype representation. We chose
to modify D0L L-systems so that they could support the
growth of TAG trees. Thus the genotype consists of a set of
D0TL rules, a tree-based analogue of D0L rules. These are
expanded during development to grow a TAG tree; at each
stage, the TAG tree is transformed into a CFG and then into
an expression tree (as in TAG3P) to permit evaluation. Figure 5
shows an outline of the structure of the overall system.

A. Genotype encoding, TAG-based L-systems

The D0TL system takes on the role of DNA, being the
subject of the evolutionary variation operators, but it is not
directly evaluated. The D0TL system encodes the instructions
for growing a TAG derivation tree (somewhat in the way
DNA encodes instructions for growing proteins), but that is
not the direct subject of evaluation either. Rather, just asthe
growth of proteins and their cellular organisation createsthe
organism (the phenotype) that is actually evaluated, so our
TAG derivation trees then generate first CFG derived trees,
and then GP expression trees, which are directly evaluated,
and hence are described as the phenotype. For want of a better
term, we describe the TAG and CFG trees as ”intermediate
phenotypes”.

Deterministic Tree L-systems with 0-interactions (D0TL-
systems) are a generalisation of D0L-systems, in which the
Right Hand Side (RHS) of a rule, instead of being restricted
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Fig. 5. Schematic Structure of DTAG3P Evolutionary / Developmental / Layered Learning System

to a string as in a D0L-system, is a tree. It nevertheless
contains a mixture of non-predecessor and predecessor nodes.2

In the particular variant used here, predecessor nodes are only
permitted to occur on the tree frontier ofβ trees. An example
of a D0TL-system appears in detail in the next Section.

We assume there is a pre-defined TAG grammarT =
(
∑

, N, I, A, S), together with a new set of (L-system) non-
terminals L = {L1, L2, L3, ...}. A D0TL-system in this
representation comprises a triple G (V , ω, P ), where:

• V = L ∪ A: that is, the alphabet, consists of the set
L = {L1, L2, L3, ...}, the L-system nonterminals (i.e.
symbols that can act as the left-hand-sides of L-system
rules) together with the setA of auxiliary (β) trees from
T , which act as the terminals of the L-system grammar.

• The initial axiomω consists of an element ofI (an α
tree), in which one of the adjunction locations has been
marked by one of theLi.

• The set of rewrite rulesP = {Pi : i = 1...m} have
the formPi : Li → T (S1, S2, ..., Sn) where the right-
hand side is an (extended) auxiliary (beta) tree in TAG,
with eachSi being an element ofV , andT being a tree
built from them. Any nonterminals (Lj) must lie on the
frontier of the tree.

As an example, we might have a TAG grammarT ′ =
(
∑

′

, N ′, α1, β1, . . . , β8, S
′) and a D0TL system G’=(V’,

ω’, P’) with V’= {L1, . . . , L12}, ω’ = (α1L1), and P’ con-
taining productionsP1 . . . P12 with, for example, produc-
tions P1, P2, P5, P12 having the right hand sides shown as
L1, L2, L5, L12 in Figure 6. We will also use a bracketed
notation as shown in Table I. The bracketed notation has the
following meaning:βi(βj : lj, βk : lk) is to be interpreted as
the adjunction of auxiliary treeβj at locationlj in parent tree
βi, and of auxiliary treeβk at locationlk. The locations are

2Because the predessor nodes behave at some times like nonterminals, and
at others more like terminals, we use the terminology predecessor / non-
predecessor instead.

numbered in this way: the root is labelled as 0, and then the
only other adjunction location is labelled as 1.3

TABLE I
(PART OF) AN EXAMPLE D0TL-SYSTEM

P1: L1 → β3:0(β2:1(L5:1))
P2: L2 → β10:0(β10:0(β10 :0(β7:0(β2:0(L12 :1)))))
... ...
P5: L5 → β6:0(L12:0,β1:0)
... ...
P12: L12 → β6:0(L12 :0,β1:0)

Figure 6 depicts tree representations of these rules, and
shows the expansion of the initial tree through them. It starts
with the initial tree inω, α, and a corresponding predecessor
P1. P1 can be replaced by the corresponding right hand
side, L1, resulting in the stage 1 individual. This tree now
contains a predecessorP5 (in general, we might have more
than one, depending on the rules we evolved), which can then
be expanded byL5 to give the stage 2 individual. This process
can be repeated until all developmental stages (here, 3) have
been completed.

B. DTAG3P

DTAG3P uses the TAG-based D0TL system to encode
the construction of TAG derivation trees, thus defining the
language bias of the genetic programming system. DTAG3P
proceeds through evolution of the L-system rules. In the
current version, the DTAG3P system maintains a fixed size set
of rules, though there is no in-principle difficulty in making the

3In general, in TAG trees, we can permit adjunction to both theroot and
the foot of aβ tree. However this can cause problems, because the same
node can be both a foot and (after adjunction) a foot. There are difficulties in
interpretation (how should we interpret such a node) and bias (root/foot nodes
would be twice as likely to be adjoined as other nodes). For these reasons,
we don’t permit foot adjunction; since the highest arity ourgrammars use is
binary, we only ever have at most one non-root adjunction location.
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Fig. 6. An Example TAG-Based L-system and its Development through Expansion:
Top Left, pre-specified TAG grammar; Top Right, D0TL Rules;
Mid Right, First Three Stages of TAG Tree Development; Mid Left, Corresponding Third Stage CFG Tree;
Bottom Left, Corresponding Expression Tree

rule-set size variable (however variable rule-sets would require
additional operators, and thus additional parameter setting).

A standard GP system [6], may be described using Koza’s
five-component scheme. We adapt it by adding a component
to describe development, and by extending the evaluation
description to incorporate developmental evaluation. Thus
our specification consists of six components: representation,
initialisation, development process, fitness evaluation,genetic
variation operators, and parameters.

1) Representation:DTAG3P uses the TAG-based D0TL
derivation trees as the individual genotype representation. The
user specifies a TAG lexical grammarGlex, defining the

solution space for the specific family of problems.
The genotype-to-phenotype transformation uses the D0TL

developmental process, generating a TAG derivation tree at
each stage of development. This representation satisfies re-
quirement 2 from Section II because of the ’feasibility’ prop-
erty of TAG derivation trees, in that a tree legally grown from
anα tree is always semantically meaningful – it does not have
to be ’completed’ in the same way as a CFG tree. However,
it still cannot be directly evaluated. As in the genotype-
phenotype mapping used in TAG3P [3], the TAG derivation
tree is used to create a second ‘intermediate phenotype’, a
Context-Free Grammar (CFG) tree, which is then transformed
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into an expression tree phenotype. As in standard GP, this
expression tree is directly evaluated for fitness. The genotype-
to-phenotype transformation can be summarised in Figure 7.

Fig. 7. DTAG3P Genotype-to-Phenotype Mapping Process

2) Initialisation Procedure:This is an algorithm for cre-
ating an initial random individual; it is repeated until the
population of sizemaxpop has been created. Each indi-
vidual is a D0TL system, containingnrules rules P =
{P1, P2, · · · , Pnrules

}. We denote the predecessors of these
rules as V = {L1, L2, · · · , Lnrules

}. For each rule, we
randomly selectω = (αL): α ∈ A, A being the set of initial
trees inGlex (TAG), and L∈ V . We construct the successor
(RHS)Si of each rule by first randomly drawingβ-trees from
B, the set of auxiliary trees inGlex (TAG) and assigning them,
together with random adjunction locations, to the RHS ofPi,
up to a random limit betweenminbetas, · · · ,maxbetas; we
then randomly drawnletter , predecessors fromV , and insert
them into the RHS, at random adjunction addresses from the
frontier of the tree.

TAG derivation trees are produced by decoding the D0TL-
system. A parametermaxlife is used to specify the number
of cycles of replacement of letters by their successors (i.e., the
number of developmental phases).

We can describe this initialization procedure through the
pseudocode in Algorithm(1).

3) Development Process:The development process is as in
Figure 6, a multi-stage expansion of the D0TL system, each
stage being evaluated for fitness as described below.

4) Staged Fitness Evaluation:Each problem domain is
represented, not by a single problem as in typical GP systems,
but by a family of problems of increasing difficulty. At the
first stage of development, the individual is evaluated against
the simplest problem; at the second stage against the second
problem, and so on.

In more detail, the process expands the D0TL system to
a given stage, interpreting the result as a TAG derivation
tree, and converting it successively to a CFG parse tree,
and an expression tree. The latter is evaluated against the
corresponding problem exactly as in a typical GP system. Each
individual undergoes a fixed maximum numbermaxlife of
developmental stages (corresponding to the size of the problem
family). Note that the fitness evaluations of later stages of
an individual’s lifetime might not be used in selection. Lazy
evaluation would eliminate them from the computational cost.
For analysis purposes in the subsequent experimental section,
we perform the evaluations, but also report the computational
cost had we avoided them.

Algorithm 1 Pseudocode for Initialisation Procedure
1: for i = 1 . . .maxpop do
2: Randomly choose anα-treeαi

3: Set axiomω equal to random predecessorLj in αi

4: for j = 1 . . . nrules do
5: Set the default alteration ratepadapt for the rule
6: Select a random predecessor forrulej = Lj

7: end for
8: for j = 1 . . . nrules do
9: Choose a random sizel = 1 . . .maxbetas

10: Pick aβ-tree at random (βt) and setT = βt

11: for k = 0 . . . l − 1 do
12: Uniformly random pick a noden ∈ T with
13: at least one unused adjoining address
14: Randomly pick an empty addressa in n
15: Choose treet from theβ-trees inGlex

16: that can adjoin toa
17: Adjoin t to a in T
18: end for
19: for m = 0 . . . nletter do
20: Adjoin randomLp ∈ V to a leaf location in T
21: Set successor ofrulej=T.
22: end for
23: end for
24: end for

C. Selection Mechanisms

Tournament selection is used because it provides a mecha-
nism to handle a family of problems, such as DTAG3P uses.
Individuals are developed to stage 1, and evaluated on the first
problem. All ‘equal best’ individuals are retained for stage 2,
the others being eliminated. The individuals are then developed
to stage 2, and are evaluated on the second problem; again,
‘equal best’ individuals are retained for stage 3, the rest being
eliminated. The process continues until only one individual
remains: it is then selected as the result of the tournament.If
all possible stages have been evaluated (i.e. some individuals
are always ‘equal best’ for each stage), then one of them is
chosen uniformly randomly.

‘Equal best’ requires some explanation. To avoid deciding
tournaments by minute differences, when a later stage might
be able to make a more rational determination, we allow some
‘slop’ in equality. A tolerance valueδ is one of the parameters
of the algorithm; individuals which differ from the true best
by less thanδ are retained for the next stage.

Algorithm 2 Pseudocode for Selection Mechanism
1: i← 1
2: while |fit(I1, i)− fit(I2, i)| < δ do
3: i← i+ 1
4: end while
5: if fit(I1, i) < fit(I2, i) then
6: I1 wins
7: else
8: I2 wins
9: end if
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Denoting the the fitness of individualI evaluated at stages
by fit(Is), for two individuals (I1, I2), the comparison process
(for minimisation) can be formalised as the pseudocode in
Algorithm 2. An example of this algorithm is shown in
Figure 8, comparing the individualsI1 and I2 with fitness
value arrays (corresponding to the9 different stages),I1(10.05,
14.66,. . .,20.35), andI2 (10.06, 14.66,. . ., 10.35). In this case,
I2 would be chosen for further evolution.

D. Genetic Operators

This subsection discusses the main genetic operators in
DTAG3P – the recombination operator, and three mutation
operators: internal crossover, sub-tree mutation and lexical
mutation.

1) Recombination:Recombination chooses two individu-
als,p1 andp2 from the population by the selection mechanism.
It then uses them as parents to create two child individualsc1
andc2. Suppose parent 1 has the following rules:

P11 : L1 → β3 : 0(β2 : 1(L5 : 1))
P12 : L2 → β10 : 0(β10 : 0(β10 : 0(β7 : 0(β2 : 0(L12 : 1)))))

and parent 2 has these:

P21 : L1 → β4 : 0(β2 : 1(β1 : 1(β1 : 0((L12 : 1))))
P22 : L2 → β7 : 0(β9 : 1(L7 : 1))

We provide the two operators ofrule exchangeandsubtree
crossover. The resulting effects on child 1 are shown below
(boxes show the parts of child 1 that differ from parent 1).

a) Rule exchange: (somewhat analogous to
chromosome-level exchange in biology) replaces one
entire rule body with the corresponding one from parent 2:

P31 : L1 → β3 : 0(β2 : 1(L5 : 1))

P32 : L2 → β7 : 0(β9 : 1(L7 : 1))

b) Sub-tree crossover:(somewhat analogous to gene-
level exchange in biology) randomly selects a sub-tree in a
rule from parent 1, and a sub-tree with the same root from a
rule in parent 2, and exchanges the sub-trees. This follows the
general framework of sub-tree crossover in TAG3P [3].

P31 : L1 → β3 : 0(β2 : 1 (β1 : 1(β1 : 0((L12 : 1))) )

P32 : L2 → β10 : 0(β10 : 0(β10 : 0(β7 : 0(β2 : 0(L12 : 1)))))

2) Mutation: Mutation chooses a parentp0 using the se-
lection mechanism, and creates a childc through applying
one of the mutation operators defined below. We provide two
mutation mechanisms causing change on varying scales: rule
interchange and sub-tree mutation. Given parent 1 as before,
we describe these in turn.

a) Rule interchange: (somewhat analogous to
chomosome-level mutations such as duplication, deletion,
fusion in biology) randomly interchanges the RHS of rules
in the parents (it is thus a very large scale operator – a
macromutation):

P31 : L1 → β10 : 0(β10 : 0(β10 : 0(β7 : 0(β2 : 0(L12 : 1)))))

P32 : L2 → β3 : 0(β2 : 1(L5 : 1))

b) Sub-tree mutation:(somewhat analogous to gene-
level mutations in biology) deletes a random sub-tree in a
random rule (e.g.β2 : 1(L5 : 1)) replacing it with a newly
generated sub-tree (e.g.β11 : 0(β8 : 0(β9 : 1(L1 : 0))):

P31 : L1 → β3 : 0( β11 : 0(β8 : 0(β9 : 1(L1 : 0)) )

We note that this set of operators is fairly complete (for
fixed-size rule sets), able to adapt the rule sets on a variety
of scales. They also have some level of surface plausibilityin
analogy to biological systems.

3) Parameters: As with most evolutionary systems, it is
necessary to specify a set of parameters to define the exact
configuration of DTAG3P. They are shown in Table II. One
parameter needs some detailed explanation. In biology, it is
clear that early developmental processes can become fixed,
and subject to lower rates of mutation than later processes
(so that human embryos develop – and then reabsorb – gill-
like structures despite some 350 million years since our most
recent ancestors actually used gills). To simulate this in our
system, when a rule is used in a developmental stage which
was used to select the parent (but is not the final such stage),
it is reset to a lower value of adaptationpgood. Thus the child
is more likely to inherit this rule unchanged.4

- The number of generations per stage:maxgen

- Population size: maxpop

- The adaption rate: padapt
- The reduced adaption rate: pgood
- Rule exchange rate; pRX

- Sub-tree crossover rate: pX
- Rule interchange rate: pRI

- Sub-tree mutation rate: psub
- Lexical mutation rate: plex
- Reproduction rate pcopy

TABLE II
DTAG3P EVOLUTIONARY PARAMETERS

For a developmental system, we also require further param-
eters to describe the developmental process. For DTAG3P, they
are shown in Table III.

- The number of stages: maxlife

- The number of rules: nrules

- The minimum number ofβ-trees in a rule: minβ

- The maximum number ofβ-trees in a rule: maxβ

- The number of predecessors in a rule RHS:npred

- The minimum difference in each stage: δ

TABLE III
DTAG3P DEVELOPMENTAL PARAMETERS

E. Meta Mechanisms

Previously (in Subsection II-C) we detailed a set of require-
ments that our developmental evaluation system needs to fulfil.
As described so far, DTAG3P meets all but the last: it has no
mechanism by which the specific stage of development can

4The application rates of operators sum to 1.0, so we don’t directly specify
pcopy, but derive it frompcopy = 1.0− (pRX + pX + pRI + psub).
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Fig. 8. Example of Selection through Developmental Evaluation

feed back into the process. Such a mechanism is desirable for
two reasons:

1) Biological plausibility – almost all biological devel-
opmental systems do incorporate such a mechanism;
without such a mechanism, we probably would not
recognise a process (for example, aggregation of unicel-
lular organisms into a colony) as truly developmental.

2) Practical necessity – most natural layered-learning prob-
lems naturally provide – or in many cases require – such
a mechanism. For example, if the system has to learn
a polynomial

∑s

i=1 x
s, at stages, it seems only fair to

give the system knowledge of the value ofs. But even
more critical, if the system is required to learn parity
of size s at stages, it should have this information to
ensure that it does not generate expressions containing
variablesXt, t > s that cannot be evaluated at stages.

Missing variables may be handled in other ways. In [97],
we usedundef to deal with ‘undefined’ variables during
evaluation. However this imposes a huge burden on the de-
velopmental system, because in the early stages of learning,
almost all variables are undefined, so that it is very difficult
during initialisation to generate individuals that have a defined
fitness. While complex penalty mechanisms could be intro-
duced, meta-variables seem to provide a more intellectually
satisfying solution.

In this system, we provide two such mechanisms: meta-
constants and meta-variables.

a) Meta-constants (MC): are treated somewhat like
ephemeral random constants (ERCs) in standard GP. First,
an MC C is sampled from a distribution just as an ordinary
ERC, but for an MC, the distribution is limited to the range
−maxlife . . .maxlife−1. To ensure that the actual value,
when sampled at stages is within the range1 . . . s, the value
is computed as(C mod s) + 1 when it is being evaluated at
stages (when development proceeds to stages+1, MCs that
were evaluated at previous stages retain their previous values).

b) Meta-variables (MV):are analogous, but the value of
an MV is a variable, rather than a constant. Given an MV
V , its corresponding indexIV is evaluated at evolution time
as for MCs – that is, its value is sampled from a distribution
over−maxlife . . .maxlife−1. As with MCs, when it is being
evaluated at stages, it will produce the corresponding variable

X(IV mod s)+1; once an MV has been evaluated at a particular
stage, it retains that value in subsequent stages, rather than
being re-evaluated at a later stage.

VI. EXPERIMENTS

In this section, we first describe the problem families
that we used in our layered learning. We then describe the
experimental settings we used to compare DTAG3P with
TAG3P and standard (Koza-style) GP. Finally, we describe
some variants which were used to test the importance of
different components of DTAG3P.

A. Problem Domains

A number of problem domains have been used for testing
in this work: symbolic regression problems, booleann-parity
problems and ORDERTREE problems.

1) Symbolic Regression of a Polynomial:In symbolic re-
gression, the system is given a set of points to fit (as in
linear and other kinds of regression – polynomial, logistic
etc.), and the system is free to construct any functional
form it chooses from its basic stock of functions. In this
problem, the function and terminal sets consisted ofF =
{+,−,×, /, sin, cos, ep, lg} and T = {x}. The target poly-
nomial symbolic regression family was the family:

F1 = x

F2 = x2 + x

F3 = x3 + x2 + x

. . .

F9 = x9 + x8 + . . .+ x3 + x2 + x

with the general form and recurrence relation

Fs(x) =

s∑

i=1

xi (1)

Fi+1(x) = x · (1 + Fi(x)) (2)

In these examples, the data consisted of 20 points sampled
uniformly randomly from the interval (-1,1).

In typical experiments, GP scales up toF4 or F5; to
understand the scaling of DTAG3P, the experiments were
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continued toF9. This problem family was chosen because
it has been widely studied, and is especially well-suited to
layered learning. We note that the problem family satisfies the
recurrence relation 2, so that each problem constitutes a sub-
stantial building block for the next, and the progression from
each stage to the next requires exactly the same mechanism.

2) Symbolic Regression of a Trigonometric Expression:
The second target family was a little tougher, requiring
the system to find a changing trigonometric relationship. A
trigonometric symbolic regression problem family was chosen
for similar reasons:

Φ1 = sin(x)

Φ2 = sin(2 · x)

Φ3 = sin(4 · x)

. . .

Φ9 = sin(28 · x)

with the general form

Φs(x) = sin(2s−1 · x) (3)

This problem family also used 20 sample points, but sampled
from the range(−π, π).

3) Boolean Parity:Thek-parity problems constitute a long-
studied family of difficult GP benchmarks. The even (odd)
task is to evolve a function returning 1 if an even (odd)
number of the inputs evaluate to 1, and 0 otherwise. Langdon
and Poli observed in [98] that the task is extremely sensitive
to change in the function set, and that the commonly-used
set OR,AND,NOR,NAND omits the usefulXOR and
EQ building blocks. Inspired by Poli and Page [99], we
chose the function setAND,OR,XOR,NOT as a suitable
compromise – containing the XOR building block, unlike the
first function set, but tougher than Poli and Page’s set (which
contained all binary Boolean functions). The problem family
seems particularly well-suited to investigating scalability, since
standard GP scales up tok=8, but not beyond.

4) ORDERTREE:The ORDERTREE problem, first intro-
duced in Hoang et al. [100], was designed with an awareness
of Daida’s problem of structural difficulty [101], and so
it attempts to remove the shape bias in optimal solutions.
Hoang et al. experimentally verified that the difficulty of the
ORDERTREE problem can be tuned both by increasing the
size of the problem, and by increasing the non-linearity in the
fitness structure. In essence, the ORDERTREE problem is a
natural analogue of the ONEMAX problem [102], a popular
genetic algorithm test problem. The function set and terminal
set for ORDERTREE of sizen are defined as: F(T)={‘1’,
‘2’, . . . , ‘n’ }. Both the function nodes and the terminal nodes
are also labeled with numbers from the set{1,2,. . . ,n}. Note
that all the functions are of arity 2 (i.e, each function has two
arguments). The (maximising) fitness evaluation is based ona
‘left-neutral-walk’ procedure: ‘If the value of a node is equal
to that of its parent node, the fitness calculation continuesby
visiting the left child. If that new node’s value is less thanits
parent, the process terminates [...], and no fitness contribution
results, the whole subtree being treated as an intron. If the
node value is greater, the subtree is evaluated, and the fitness

contribution is passed to the parent. If the value is equal to
its parent, its left child is evaluated recursively. In all cases,
the fitness contribution of the right child is zero, so that the
right subtree acts as an intron. The process is fully detailed
in [100]. Figure 9 shows examples of fitness calculations for
a 3-ORDERTREE problem (top) and one of many optimal
solutions (bottom).

The ORDERTREE problem family used in this paper was
O(1), O(2), . . . , O(6), whereO(i) denotes the ORDERTREE
problem of sizei.

B. Meta Mechanisms

No meta mechanism was needed for the simple polynomial
problem. For the trigonometric problem, where the values is
important for solving the problem, the system was provided
with meta-constants.

In the polynomial and trigonometric problem families, there
is only one domain variable,x. By contrast, in the Booleann-
parity and ORDERTREE problems, each new (s+1) problem
introduces a new variablexs+1 that cannot be meaningfully
evaluated in the precedings problem. In these problems, we
have provided meta-variables to eliminate the difficulty.

C. Comparisons Between Different GP Systems

The first stage of the experiments compared three different
systems: GP (a basic Koza-style tree-based GP system [6]);
DTAG3P (DTAG - the system described above), and TAG3P
(a tree-based GP system, using as its genotype the same TAG
representation as DTAG3P’s intermediate phenotype, but using
an evolutionary process identical to that of GP). The three
systems were evaluated on the four problem families from
Subsection VI-A.

1) Parameter Settings:To evaluate their performance, we
used a fixed budget of function evaluations (numeval), with
the population sizemaxpop = 250, and the max generation
size being adjusted to maintain this budget. This is important
for fair comparison, because DTAG3p uses multiple staged
evaluations; thus overmaxgen generations, it will conduct
numeval = maxgen ·maxlife ·maxpop function evaluations.
Hence for a fair comparison, the GP and TAG systems should
be allowed to run formaxgen ·maxlife generations.

The detailed parameter settings are shown in Table IV. The
GP and TAG3P settings are typical for these problems. The
DTAG3P settings were found by trial and error. We found
that high probabilities for the more disruptive operators (rule
exchange and rule interchange) led to poor performance, but
that performance was insensitive to the rates of other oper-
ators. The DTAG3P lifetime was determined by the problem
definition (the number of developmental stages must equal the
number of problem layers. Other parameters (especially,nrules

and maxβ), were also determined by experiment. With the
exception ofδ and npred, they were not very sensitive, and
any reasonable values work.npred needs to be determined
by preliminary experiments for each problem (a value of 1
is a reasonable starting point, but it may not work in all
cases, depending on how fast the solution complexity needs
to increase with problem layer / developmental stage). The
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Left: fitness=4, centre: fitness=1, right: fitness = 0

Fig. 9. 3-ORDERTREE Examples – top: trees of various fitnesses; bottom: an optimal tree. The nodes shown under broken links act as introns.

TABLE IV
EVOLUTIONARY PARAMETER SETTINGS

WHERE DIFFERENT, VALUES FOR DIFFERENT PROBLEMS SEPARATED BY SLASHES.

GP TAG3P DTAG3P
Problems Polynomial/Trigonometric/Parity/ORDERTREE
Selection Tournament, size 3
Recombination Rule, Subtree Exchange
Mutation Rule Interchange,

Subtree and Lexical Mutation
♯ of Runs 30
numeval 227,250 / 1,359,000 / 202,000 / 126,250
maxpop 250 / 1000 / 250 / 250
maxgen 909 / 1359 / 808 / 505 101 / 151 / 101 / 101
maxdepth 30 N/A N/A
maxsize N/A 1,000 NA
pX 0.9 N/A
pmut 0.1 N/A
pcopy 0.1 N/A
maxlife N/A 9 / 9 / 8 / 5
nrules N/A 12
minβ N/A 1
maxβ N/A 7
npred N/A 1 / 1 / 1 /≤ 4
padapt N/A 1.0
pgood N/A 0.05
pRX N/A 0.1
pX N/A 0.24
pRI N/A 0.1
psub N/A 0.24
pcopy N/A 0.08
δ N/A 0.001 / 0.001 / 0.001 / 0.5

tolerance parameterδ was particularly sensitive, and needed
to be separately determined for each problem domain (it
undoubtedly depends on the problem; in particular, it should
almost certainly depend on the scale of fitness values). We ex-
amine the importance of correctly settingδ in our experiments
reported below. However we have not examined the parameter

settings for the DTAG3P system in detail; we discuss this issue
more fully in Subsection IX-C.

2) Problem Grammars:The elementary TAG tree set for
the polynomial problem solution space (used inTAG3P and
DTAG3P) was previously presented at the top-left of Figure 6.5

Since TAG grammars may be unfamiliar to many readers,
we also present in Table V the equivalent CFG,G1.

TABLE V
CFGFOR POLYNOMIAL SYMBOLIC REGRESSIONPROBLEM

G1 = (V1, T1, P1, S1)
S1 = EXP
V1 = {EXP,PRE,OP,VAR}
T1 = {x,sin,cos,lg,ep,+,-,*,/}
P1 =

EXP → EXP OP EXP| PRE EXP| VAR
OP → +| − | ∗ |/
PRE → sin | cos | lg | ep
V AR → x

The grammar for the trigonometric problem is identical to
that in Figure 6 with two exceptions

1) The unary operators cos, ep and lg are not available as
lexical elements (that is,β10 . . . β12 are omitted from
the grammar)

2) The variable X is supplemented by a second lexical
item, the constant ONE (that is, every remainingβ tree,
together with theα tree, has a duplicate in which the
variable X is replaced by the constant ONE)

This corresponds to the CFGG2 seen in Table VI.

5The operator / is protected division (i.e. returns 1 when thedenominator is
0), ep is the exponential function, andlg is the protected logarithm function
(returns the log of the absolute value, but returns 0 for the input 0).
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TABLE VI
CFGFOR TRIGONOMETRICSYMBOLIC REGRESSIONPROBLEM

G2 = (V2, T2, P2, S2)
S2 = EXP
V2 = {EXP,PRE,OP,VAR}
T2 = {x,ONE,sin,+,-,*,/}
P2 =

EXP → EXP OP EXP| PRE EXP| VAR
OP → + | - | ∗ |
PRE → sin
V AR → x | ONE

For the k-parity problem, we use the TAG grammar in
Figure 10, corresponding to the CFGG3 in Table VII.

Fig. 10. TAG Elementary Trees fork-Parity Problem

TABLE VII
CFGFORk-PARITY PROBLEM

G3 = (V3, T3, P3, S3)
S3 = EXP
V3 = {EXP,PRE,OP,VAR}
T3 = {x1, x2, . . . , xk}
P3 =

EXP → EXP OP EXP| PRE EXP| VAR
OP → AND| OR | XOR
PRE → NOT
V AR → x1, x2, . . . , xk

For the ORDERTREE problem of orderk, the CFG isG4

shown in Table VIII, resulting from TAG elementary trees
corresponding to those in Figure 10, but with the lexicon AND
| OR | NOT in the first and second kinds ofβ trees, and the
lexicon x1, x2, . . . , xk in the fourth, replaced by the lexicon
1, 2, . . . , k, and with the third kind ofβ tree omitted.6

D. The Importance of DTAG3P Components

By comparison with standard GP, DTAG3P introduces four
major innovations: the representation (TAG trees), the devel-
opmental process, layered learning (developmental evaluation)

6In this grammar, functions and terminals are both labelled by numbers,
the functions always having arity 2.

TABLE VIII
CFGFOR ORDERTREE PROBLEM

G4 = (V4, T4, P4, S4)
S4 = EXP
V4 = {EXP,OP,VAR}
T4 = {x1, x2, . . . , xk}
P4 =

EXP → EXP OP EXP| VAR
OP → 1|2| . . . |n
V AR → 1|2| . . . |n

and developmental feedback (meta mechanisms). We argued
in the introduction for synergy between these components:
that the interaction between these components would bring
greater benefits than the individual components. To evaluate
the effects of the first three (we plan to study the fourth
comprehensively in future work), we introduce three further
’intermediate’ treatments. These treatments combine some, but
not all, of these components. The systems are:

• GPgen: This treatment is designed to address the issue
that good performance exhibited by DTAG3P might arise
simply from the layered learning process – the increas-
ing difficulty of fitness functions – independent of the
developmental process. In this treatment,F1 is used for
the first maxgen evaluations, thenF2 and so on; more
formally, for i from 0 to n-1, generation (i*maxgen) to
generation (i+1)*maxgen - 1 uses fitness functionFi+1.
Otherwise, the treatment is identical to GP.

• TAGgen: This treatment addresses the hypothesis that the
performance of DTAG3P arises from a synergy between
layered learning and the TAG representation, and the
developmental process is incidental.

• DTAGFn all: This treatment addresses the converse is-
sue, that DTAG3P performance might arise simply from
the developmental mechanism having an opportunity to
find small solutions, without any need for changing fitness
functions (i.e. for layered learning). This treatment uses
the multi-stage evaluations of DTAG, but each stage is
evaluated using the fitness functionFn, instead of varying
through the familyF1 to Fn.

The three treatments above were tested on all four prob-
lem domains: polynomial symbolic regression, trigonometric
symbolic regression, booleank-parity, and ORDERTREE.

VII. R ESULTS

We examine the performance of the three systems (GP,
TAG3P and DTAG3P) on each of the four problem families,
comparing them with three other treatments (GPgen, TAGgen
and DTAGFn all) intended to illuminate the behaviour of
DTAG3P. Overall success rates are summarised in Table IX.

Figure 11 depicts the cumulative frequencies of success of
the various systems (systems not achieving any successes are
omitted from the figure for reasons of clarity).

From both tabular and figure data, we can immediately see
that only DTAG3P performed well on all these problems. GP
and TAG3P were somewhat successful on 6-ORDERTREE
(though much less so than DTAG3P), and DTAGFn-all per-
formed acceptably on 8-parity; apart from these, all systems
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Fig. 11. Cumulative Frequencies of Success of all Systems onProblem Families
Top: Left: Polynomial (Fi(x)) and Right: Trigonometric (Φi(x)) Symbolic Regression Bottom: Left:k-parity and Right:n-ORDERTREE

TABLE IX
SUCCESS RATES ONPOLYNOMIAL (POLY) AND TRIGONOMETRIC

(TRIGO) SYMBOLIC REGRESSION, 8-PARITY AND 6-ORDERTREE

(6-ORDER)

POLY TRIGO 8-PARITY 6-ORDER
DTAG 100% 53.33% 86.67% 53.33
DTAGFn all 0% 0% 50% 0%
TAG 10% 0% 10% 33.33%
TAGgen 13.33% 0% 0% 0%
GP 0% 0% 6.67% 26.67%
GPgen 0% 0% 3.33% 0%

other than DTAG3P were uniformly unsuccessful on these
problems. This is not surprising – they are tough problems.

Our hypothesis about the behaviour of DTAG3P is not
merely that it performs well, but that it learns in a layered,
incremental fashion. Figure 12 elucidates this further, show-
ing the cumulative success of DTAG3P on the layered sub-
problems from which (we posit) it builds its overall solutions.
In all cases, DTAG3P learnt in a layered, incremental fashion,
using the solutions of simpler problems as stepping stones to
solutions to the larger-scale problems.

Cumulative frequency of success, however, does not tell
the whole story. It is important, also, to see the change
in fitness during a run. Figure 13 shows the median (over
all runs) of the best fitness for the three main treatments

(GP, TAG3P, DTAG3P).7 Since the fitness scales for the two
symbolic regression problems are very compressed, we also
show a more expanded view in Figure 14. All confirm that,
while GP and TAG3P show better performance early (because
DTAG3P at that stage is concentrating on the simpler problems
in the family, so its performance on the final problem is
essentially random), their performance stagnates, while that
of DTAG3P continues to improve, eventually providing much
better performance.

Further understanding may be gained from seeing the me-
dian performance in each generation. Figure 15 shows these,
for each of the three main treatments. Again, in most cases,
we see a similar behaviour, with DTAG3P displaying poor
early performance, but eventually yielding far better results
than the other methods. We carried out similar studies on
the other treatments (GPgen, TAGgen, DTAGFnall), and saw
very similar results in all cases.

A. Sensitivity toδ

DTAG3P introduces a number of new parameters; most
are not particularly novel (rates of applications of different
operators etc.) so that previous experience in evolutionary
computation can guide their setting. However one,δ, is

7To avoid results being heavily skewed by outliers, all results reported here
use the median rather than the mean.
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Fig. 12. Cumulative Frequencies of Success of DTAG3P on Problems in Problem Families
Top: Left: Polynomial (F9(x)) and Right: Trigonometric (Φ9(x)) Symbolic Regression Bottom: Left: 8-parity and Right: 6-ORDERTREE

TABLE X
SUCCESS RATES OFDTAG3PWITH VARYING δ

δ=0.000001 δ=1.0 δ=5.0
Polynomial 86.67% 100% 40%
Trigonometric 53.33% 63.33% 33.33%

completely new, since it directly relates to the structure of
the system. It is also a core parameter in our system, since
it controls the interaction between the developmental process
and the problem layers.

We performed a test of its effect on the performance of
DTAG3P (on the two symbolic regression problems only),
varying it over a wide range. Our previous discussion of
layered tournaments suggested that too small a value could
lead DTAG3P to overfit to simple problem layers at early
stages of development, rendering it difficult to recover and
build performance on more difficult problem layers. On the
other hand, too large a value might also damage performance,
by failing to ensure good performance at any level. This is
what we found:δ needs to have an intermediate value.

At the moment, we have no a-priori way to predetermine
a suitable value. The value ofδ for a new problem family
should be determined by preliminary experiments. The results
in table X suggest that a bias toward smaller values might save
time, since the deterioration in performance with small values

of δ was much less than with large values.
However it is clear that this area warrants further inves-

tigation. Since we have no particular reason to expect the
optimal value ofδ to be the same at each developmental
stage and problem layer, adaptive mechanisms would be worth
exploring.

VIII. S IMPLICITY AND REGULARITY

In the preceding analysis, we concentrated on performance
issues: how well did DTAG3P solve problems. But in our ini-
tial discussion, we hypothesised that developmental evaluation
would result not merely in better and more scalable solutions,
but better structured, more regular ones. Did this occur?

A. Solution Visualisation

One way to determine this is to examine the solutions by
eye. Figure 16 represents a typical solution to the 8-parity
problem, as found by DTAG3P. Anyone familiar with GP
solutions will be immediately struck by two things: its small
size (19 nodes – typical solutions found by GP and TAG
respectively contained around 200 and around 1,000 nodes)
and lack of introns; and its elegance and repeated regular
patterning. In the corresponding D0TL system, we can directly
find an encoding of the recurrent expressionxi XOR Fi−1.

As in biology, we see the emergence of repeated dupli-
cations of structure, though nothing in the system directly
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Fig. 13. Median of the Best Fitness
Top: Left: Polynomial (F9(x)) and Right: Trigonometric (Φ9(x)) Symbolic Regression Bottom: Left: 8-parity and Right: 6-ORDERTREE

requires such duplication. This systematic duplication and
regular structure doesn’t appear in these systems unless they
incorporate the delicate interplay of layered learning and
development provided by the layered tournament.

TABLE XI
AN EXAMPLE OF A SOLUTION OF DTAG3PON THE POLYNOMIAL SERIES:

D0TL-REPRESENTATION

P1: L1 → β3:0(β2:1(L5:1))
P2: L2 → β10:0(β10:0(β10:0(β7:0(β2:0(L12:1)))))
... ...
P5: L5 → β6:0(L12:0,β1:1)
... ...
P10: L10 → β2:0(L2:0)
P11: L11 → β2:0(β4:1(β3:0(β2:0(L11:1))))
P12: L12 → β6:0(L12:0,β1:1)

Let us look further at this, by examining in detail a solution
found by DTAG3P on the polynomial problem family. Ta-
ble XI shows the key part of the D0TL rules of the genotype,
while Table XII depicts the corresponding genotypes and
phenotypes in linear string format for development stages 1,
2, 3 and 9. These tables refer to the grammar from Figure 6,
which has only one initial tree, (α0).

Figures 17, 18 and 19 show the corresponding intermediate
and final phenotypes: TAG derivation trees, CFG derived trees
and GP expression trees. In the TAG tree, we see the regular
pattern:β6:0(L12:0,β1:1). This results in the circled structure
in the CFG tree, which is then repeated into larger and larger

trees as development proceeds (the stage 9 tree in this case
is too large to draw). Finally, in the expression tree, we see
the repeated regular patternx + x · Fi, i.e. the appropriate
recurrence relation.

Similar analyses have been conducted for other problems,
with similar results, but are omitted here for brevity.

B. Computational Effect of Simplicity and Early Death

In the computational experiments, we used the same number
of function evaluations to compare the different GP systems.
But was this really fair? Firstly, in equilibrating DTAG3P’s
computational cost with the other systems, we assumed that
DTAG3P developed every individual to its final stage. But in
fact, the tournament evaluation that DTAG3P uses does not
require this; if lazy evaluation is used, less fit individuals are
unlikely to be evaluated through all stages – in effect, they
’die early’. Second, because DTAG3P individuals are much
simpler than their competitors, they may cost less to evaluate.
In most GP settings, evaluation cost is directly proportional
to individual size (or at minimum, to the size of the compo-
nents actually executed). We decided to take full account of
this issue, by comparing the total number of evaluations of
expression nodes used in the fitness comparisons. Table XIII
shows the result for the parity problem; even though DTAG3P
found many more solutions than the other systems, it found
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Fig. 14. Close-up of Median of the Best Fitness Left:F9(x), Right: Φ9(x)

TABLE XII
INTERMEDIATE AND FINAL PHENOTYPES OF ANEXAMPLE DTAG3P SOLUTION FOR POLYNOMIAL PROBLEMS

S1 TAG
Trees

α0:0(β3:0(β2:1(L5:1)))

CFG
Trees

EXP(PRE(L5),EXP(EXP(EXP(VAR(X)),OP(sub),EXP(VAR(X))),OP(add),EXP(VAR(X))))

GP
Trees

add(sub(X,X),X)

S2 TAG
Trees

α0:0(β3:0(β2:1(L5:1(β6:0(L12:0,β1:1)))))

CFG
Trees

EXP(EXP(VAR(X)),OP(add),EXP(EXP(PRE(L5),EXP(EXP(EXP(VAR(X)),OP(sub),EXP(VAR(X))),
OP(add),EXP(VAR(X)))),OP(mul),EXP(PRE(L12),EXP(VAR(X)))))

GP
Trees

add(X,mul(add(sub(X,X),X),X))

S3 TAG
Trees

α0:0(β3:0(β2:1(L5:1(β6:0(L12:0(β6:0(L12:0,β1:1)),β1:1)))))

CFG
Trees

EXP(EXP(VAR(X)),OP(add),EXP(EXP(PRE(L5),EXP(EXP(EXP(VAR(X)),OP(sub),EXP
(VAR(X))),OP(add),EXP(VAR(X)))),OP(mul),EXP(EXP(VAR(X)),OP(add),EXP(EXP
(PRE(L12),EXP(VAR(X))),OP(mul),EXP(PRE(L12),EXP(VAR(X)))))))

GP
Trees

add(X,mul(add(sub(X,X),X),add(X,mul(X,X))))

S9 TAG
Trees

α0:0(β3:0(β2:1(L5:1(β6:0(L12:0(β6:0(L12:0(β6:0(L12:0(β6:0(L12:0(β6:0

(L12:0(β6:0(L12:0(β6:0(L12:0(β6:0(L12:0,β1:1)),β1:1)),β1:1)),
β1:1)),β1:1)),β1:1)),β1:1)),β1:1)))))

CFG
Trees

EXP(EXP(VAR(X)),OP(add),EXP(EXP(PRE(L5),EXP(EXP(EXP(VAR(X)),OP(sub),EXP
(VAR(X))),OP(add),EXP(VAR(X)))),OP(mul),EXP(EXP(VAR(X)),OP(add),EXP(EXP
(PRE(L12),EXP(VAR(X))),OP(mul),EXP(EXP(VAR(X)),OP(add),EXP(EXP(PRE
(L12),EXP(VAR(X))),OP(mul),EXP(EXP(VAR(X)),OP(add),EXP(EXP(PRE(L12),EXP
(VAR(X))),OP(mul),EXP(EXP(VAR(X)),OP(add),EXP(EXP(PRE(L12),EXP(VAR
(X))),OP(mul),EXP(EXP(VAR(X)),OP(add),EXP(EXP(PRE(L12),EXP(VAR(X))),OP
(mul),EXP(EXP(VAR(X)),OP(add),EXP(EXP(PRE(L12),EXP(VAR(X))),OP(mul),EXP
(EXP(VAR(X)),OP(add),EXP(EXP(PRE(L12),EXP(VAR(X))),OP(mul),EXP(PRE
(L12),EXP(VAR(X)))))))))))))))))))

GP
Trees

add(X,mul(add(sub(X,X),X),add(X,mul(X,add(X,mul(X,add(X,mul(X,add(X,mul
(X,add(X,mul(X,add(X,mul(X,add(X,mul(X,X))))))))))))))))

them at far lower computational cost – an order of magnitude
less, except in the case of DTAGFnall.

TABLE XIII
MEAN NUMBER OF NODE EVALUATIONS PER RUN

8-Parity
DTAG 9294835.3
DTAGFn all 19066168.8
TAG 142900418.1
TAGgen 84761732.3
GP 208319791.0
GPgen 124944247.5

C. Regularity of Solutions

The solutions found by DTAG3P are smaller, and certainly
look simpler, than those found by other systems. But are they
really more regular? To answer this question, we made use of
the compression metrics briefly outlined in Subsection IV-C,
and fully detailed in [88]. We applied these metrics to the
output of four of these treatments (GP, TAG3P, DTAG3P
and DTAGFn all). For the purposes of fair comparison, it
is important to compare like with like; fortunately, all these
systems generate GP expression trees as their final phenotype,
so we can directly compare the complexity of these expression
trees. A second issue also arises in this case; individuals are
of different sizes – perhaps different-sized individuals might
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be more or less compressible, independent of their regularity.
Please see [88] for a detailed discussion of this issue, and
of the normalisation mechanisms we have used to overcome
it. In the results detailed here, we only look at the results
of the polynomial symbolic regression problems, but similar
behaviour is found in all the problems studied in this paper.

Figure 20 shows the evolution of individual regularity
throughout the runs. We can see, firstly, that DTAG3P gen-
erates much higher regularity (larger values indicate higher
regularity) than the other systems, whether in the raw code,
or to an even greater extent, in the trees simplified to their
effective skeleton. DTAGFnall (shown as DTAGF9all in the
plots) does start off with an initial high degree of regularity
(initially bearing out the widely-accepted view that develop-
mental systems, on their own, can promote regularity), but
this regularity is rapidly lost. In the end, DTAGFnall actually
generates lower regularity than TAG3P. Standard GP generates
the most irregular phenotypes of all.

It should be noted that these metrics rely on the underlying
model of the specific compression method – in this case,
XMLPPM. Potentially this could be unfair, if XMLPPM was
particularly biased to detecting the kinds of regularitiesthat
DTAG3P embodies, while ignoring those produced by other
systems. This objection is unavoidable, whatever method is
used to measure regularity – true regularity metrics, for exam-
ple based on Solomonoff-Kolmogorov complexity, are uncom-

putable. But in defence of this issue, we note that XMLPPM
was developed for XML compression, with no awareness at
the time that it would be applied to the compression of GP
trees.

IX. D ISCUSSION

A. Synergies between Developmental Components

In our introduction, we proposed that a specific combination
of development, evaluation and layered learning might lead
to synergies. That is, better and more scalable solutions to
families of problems might result, with the solutions being
both simpler and more regularly structured. In the event, this
has been borne out. As we saw in Section VII, DTAG3P is able
to reliably solve problems – symbolic regression for high order
polynomials and trigonometric functions, parity problemsand
ORDERTREE problems – at scales that are far beyond the
capabilities of standard GP or of TAG3P. Section VIII showed
that it is able to do so while using an order of magnitude
less computational resources (measured in node evaluations). It
generated solutions that were far smaller, and also more regular
and structured. It is also worth noting, in passing, that as aby-
product, DTAG3P gave us, effectively for free, solutions tothe
earlier problems found during layered learning. For example,
86.66% of runs gave us solutions to the 7-parity problem,
which is also difficult for TAG and GP.
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Fig. 16. Expression tree representation of a DTAG3P Solution to 8-parity

Fig. 20. Individual Complexity vs Function Evaluations: Raw (left) and Simplified (right) Trees

Our other experiments in Section VII showed that these
results were not the result of the TAG representation, or
of layered learning, or of both in combination, nor were
they purely the result of the developmental process or the
D0TL genotype representation. The combination of all these
components was required to solve these problems, at least in
the contexts proposed in this work.

Overall, we believe we have validated our main argument.
That is, that an organism which overfits to the problem at
one stage will find it difficult to adapt later, and will be out-
competed by more adaptable individuals – organisms that, in
accordance with parsimony theory, will on average be simpler
and more regular.

In this work, we did not test whether the main regularity-
promoting mechanism we identified in biology (duplication)
would have such an effect in DTAG3P. The main reason was
lack of need: regularity emerged (as we predicted) without
any explicit regularity-promoting operator. Adding duplication
operators would muddy the waters. An additional reason, since
it would be an interesting exercise to compare the system with
and without duplication operators, is programming complexity.
Adding duplication operators would make an already-complex
program unwieldy (besides requiring further operator rate

parameters). However we note that in other work, we have
demonstrated the effectiveness of duplication operators in the
non-developmental TAG3P system [103].

B. Assumptions and Limitations

The DTAG3P system proposed here has a number of
potential limitations.

Foremost is the layered learning requirement for a family
of related problems, rather than a single problem. DTAG3P,
and indeed the whole program advanced here, is intimately
entwined with layered learning. When layered problems are
not available, it is inapplicable. This is really only an issue if
DTAG3P is viewed as a competitor for GP. We don’t see it
this way. For the many problems naturally present without
layering; DTAG3P is simply inapplicable. However many
other real-world problems have natural layered structures.
Examples range from robot behaviour to multi-agent learning,
from visual processing to circuit design or robot soccer [37],
[38], [40], [41], [104]. For these problems, DTAG3P can take
advantage of the layered structure much more effectively than
GP or related systems.

Second is its complexity. However the core ideas – of
combining layered learning with development – are indepen-
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(S1)F1 = x (S2)F2 = x2 + x

(S3)F3 = x3 + x2 + x (S9)F9 = x9 + . . .+ x2 + x

Fig. 17. TAG Tree Solution for Polynomial Series

dent of the particular implementation. For instance, in recent
work, McPhee et al. [25] adopted a similar approach for
their linear GP system with N-gram probabilistic learning.
Their results were consistent with the findings in this paper,
in that the combination of layered learning, with evaluation
during the developmental process, was vital for the sucess
of their DGP system. More generally, these ideas could
equally readily be implemented in any other system that could
support the requirements of Subsection II-C; Grammatical
Evolution [105], Cartesian Genetic Programming [106] and
PushGP [107] spring immediately to mind.

The DTAG3P system introduces a number of new param-
eters, potentially increasing the cost of initial tuning and the
risk of overfitting. While we have not yet carried out detailed
parameter sensitivity studies, our experience so far suggest that
it is not difficult to choose good values for these parameters.
Other work not reported here [108] suggests that overfittingis
not one of the failings of DTAG3P.

The effects of the meta mechanism have not been investi-
gated in detail in this study. In the case of the polynomial
problem, meta-mechanisms were not used, so that at least

(S1)F1 = x (S2)F2 = x2 + x

(S3)F3 = x3 + x2 + x

Fig. 18. CFG Tree Solution for Polynomial Series

some of the good performance of DTAG3P was independent of
the use of meta-variables and constants. At the other extreme,
meta-variables were crucial to the incorporation of layered
learning into the developmental process for parity and OR-
DERTREE problems. Without them, there was no mechanism
for layered learning to take place, so no comparisons with
and without meta-variables was feasible (we were unable to
get penalty approaches to work, because we could not get
the initial population to generate sufficient feasible individuals
for evolution to proceed). However it is clear that in some
cases, meta-mechanisms do add a great deal to the system –
for example, we were unable to find good solutions to the
trigonometric problem family without them.

C. Future Extensions

A wide range of extensions of this work are possible.
Most immediately, it is clear that the combination of compo-

nents, for which we use the name evolutionary developmental
evaluation (EDE), could be readily applied to a number of
other GP systems. We hope to promote and collaborate with
such work in the near term.

This paper has compared DTAG3P with tree-based GP
systems, because we wished to concentrate on the effects
of evaluation during development, which in turn required
us to reduce the effects of differences in search space size,
fitness landscape complexity etc. These effects can be very
substantial [3], [109]. Despite these risks, we hope to carry
out a comparison with other developmental systems, especially
linear-GP based ones that can handle the same or similar
problems, as soon as is feasible.
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(S1)F1 = x (S2)F2 = x2 + x

(S3)F3 = x3 + x2 + x (S9)F9 = x9 + . . .+ x2 + x

Fig. 19. GP Expression Tree Solutions for Polynomial Series

The meta-mechanism is a prime area for further exploration.
Topics of interest include formalisation in terms of higher-
order function theory, investigation of a wide range of alter-
natives for detailed implementation, and broader experimental
validation of its value. However the current meta-mechanism
lacks a crucial aspect of natural development: the ability of the
developmental process to respond to environmental influences.
We view this as one of the most promising future research
directions.

At a more detailed level, we plan to undertake more
detailed studies of parameter sensitivity, especially of the key
δ parameter; at the same time, we will be investigating ways
to self-adapt these parameters, to remove the tuning load.

In related studies, we are examining the role of DTAG3P
as a hyperheuristic, and its ability to learn general solutions,
and then adapt them to new problems. Specifically in the
area of machine learning, we are currently investigating the
potential for developmental evaluation and layered learning to
generate more robust, parsimonious solutions to noisy learning
problems.

One interesting result of this work is the observation that our

D0TL system regularly – in fact, almost universally – evolves
recursive grammars. Thus one very interesting possibility
is to present DTAG3P with increasing depths of recursion
in its problem instances. DTAG3P will hopefully evolve a
D0TL system implementing that recursion. With our current
mapping strategy, the recursion is not explicitly available
at the phenotype level. But once the recursion is explicitly
present in the genotype, it should be feasible to use recursion
preserving transformations to map the D0TL-level recursion
to the genotype level, thus providing a new mechanism for
evolving recursive programs.

X. CONCLUSIONS

This paper presented a brief survey of current research on
modularity and regularity in evolutionary systems, in biology
and in artificial life, with emphasis on their role in evolutionary
developmental systems and developmental genetic program-
ming systems.

Based on this perspective, we investigated a combination
of abstractions from natural mechanisms. We investigated
whether this combination, EDE, led to synergies, which pro-
duced better performance in combination than as individual
components. Specifically, we investigated combinations of:

• Developmental process governed by ‘genes’
• Developmental evaluation
• Evaluation in sequence
• Varying semantics during development (layered learning)
• Adaptive variation rates
• Availability of ”stage” information to the developing

organism

In the implementation, we extended the pre-existing Tree
Adjoining Grammar Guided Genetic Programming (TAG3P)
framework to incorporate these components, resulting in De-
velopmental TAG3P (DTAG3P).

DTAG3P was benchmarked on a range of problems,
and compared with conventional non-developmental systems
(TAG3P and tree-based GP), and with systems omitting some
of the proposed synergistic components.

• EDE was more computationally efficient than its com-
parators, finding more accurate solutions faster.

• EDE evolved greater regularity, reflecting repeated dupli-
cations of segments of the phenome, than did the other
systems.

• This regularity resulted in better scalability, which was
absent unless all the above components were provided.

• In EDE, parsimony in structure could be preferentially
selected without any need for an explicit parsimony
management scheme. Subjectively, EDE’s solutions were
generally elegant, simple, small in size and easily under-
standable.

• The evolutionary developmental evaluation mechanism
incorporated re-use of building blocks, as confirmed by
compression measurements. Thus, it had the ability to
explore a larger and more sophisticated problem space
by building up from simpler ones.

Overall, the results validated our hypotheses about the
effects of combining evolution, lifelong evaluation throughout
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development, and layered learning, confirming that the result-
ing implicit generalisation pressure supported more structured
and scalable solutions to problems. It opens up a number
of new lines of research, with the potential for significant
progress in developing effective, scalable learning systems.
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