
Grammar Model-based Program Evolution

Abstract—In Evolutionary Computation, genetic operators,
such as, mutation and crossover, are employed to variate the
individuals to generate next population. However, these fixed,
problem independent genetic operators may destroy the sub-
solution, usually called building blocks, instead of discovering
and preserving them. One way to overcome this problem is
to build a model based on the good individuals and sample
this model to obtain the next population. There some research
Because of the complexity of Genetic Programming (GP) tree
representation, little work of this kind has been done in GP. In
this paper, we propose a new method, Grammar Model-based
Program Evolution (GMPE) to evolved GP program. We replace
common GP genetic operator with a Probabilistic Context-free
Grammar (SCFG). In each generation, a SCFG is learned and
new population is generated by sampling this SCFG model. On
two benchmark problem we have studied, GMPE significantly
outperforms conventional GP, usually a few times faster and
more reliable.

I. INTRODUCTION AND RELATED WORK

In Evolutionary Computation, genetic operators, such as,
mutation and crossover, are employed to variate the individuals
to generate next population. However, these fixed, problem
independent genetic operators may destroy the sub-solution,
usually called building blocks, instead of discovering and pre-
serving them. One way of overcome this problem, is to build
a model based on the good individuals and sample this model
to obtain the next population. Recently, this kind of research,
research on EC guided by inductively learned model, such as
Estimation of Distribution Algorithm (EDA) [10], Probabilistic
Model-building Genetic Algorithm (PMBGA) [15], has drawn
increasing interests.

There are several reasons that lead to this increasing inter-
ests. The first reason is the theoretical attraction. The highly
complex and dynamic consequences of genetic operator is
extremely hard to understand and predicate. Replacing genetic
operator and population with well-formed model makes it
possible to understand EC. In some simple cases, EC guided
by inductively learned model is a quite accurate approximation
of conventional EC [7], [12]. Secondly, in terms of practical
usefulness, the empirical studies have showed the superior
performance of this kind of new methods, in general.

Because of the abandon of genetic operators, either partially
or completely, this kind of method becomes very different
from the method of conventional evolutionary computation.
However, representation of individual is consistent with con-
ventional Genetic Algorithm (GA) or Genetic Programming
(GP), i.e. GA style linear string representation or GP style
hierarchical tree. Although more flexible, tree representation is
more complicated than linear representation. Therefore, most
of current research are focus on linear representation.

In this paper, we propose a new model for program evolu-
tion, Grammar Model-based Program Evolution (GMPE). We
use GP style tree representation, with no conventional genetic
operator. The stochastic grammar model is learned from the
superior individuals and the new population is generated by
sampling this grammar. Grammar model can represent the
common structure of the superior individuals (building blocks)
very well. Due to flexibility of grammar model, GMPE,
the method we propose, far outperform on two benchmark
problems we have studied.

This paper is organized as follows. We briefly review
the related work with GA style linear representation and
then with GP style tree representation in this section fol-
lowed by a overview of our GMPE to give the audience a
flavor of our method. In Section II, we present our work
in detail, including high level algorithm, the probabilistic
model (Stochastic Context-free Grammar), modeling learning
method. To prove the our idea, two experiments are reported in
Section III. We discuss the difficult of evolving program with
tree representation, comparing with evolving solution with
linear representation, such as, EDA [10], and how our GMPE
addresses these difficulties in Section IV. The last section is
the conclusion.

A. Related Works with GA Style Linear Representation

There is extensive similar work in evolving linear solution
guided by a inductively learned model, they differ mainly
in the models they choose. Among them, we perceive the
following two streams.

The first is the Learnable Evolution Model (LEM) [11].
The central engine of evolution in LEM is a machine learning
mode, which creates new populations by employing hypothe-
ses about high fitness individuals found in past populations.
The machine learning mode seeks reasons why certain in-
dividuals in a population are superior to others, thus to
form inductive hypotheses which explicitly characterize good
individuals.

The other one is Estimation of Distribution Algorithm
(EDA) [13], [17]. EDA uses a probabilistic model of promising
solutions to guide further exploration of the search space. EDA
is a cluster of methods, ranging from methods that assume
the genes in the chromosome are independent [3], [7], [12],
through others that take into account pairwise interactions [4],
[2], [18], to methods that can accurately model even a very
complex problem structure with highly overlapping multivari-
ate building blocks [14], [6], [16], [5].

rim
Text Box
This is a self-archived copy of the accepted paper, self-archived un- der IEEE policy. The authoritative, published version can be found at http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1330895&tag=1

B. Related Works with GP Style Tree Representation

Because of the complexity of GP style tree representation,
the amount of work of evolving program with tree represen-
tation is not comparable with the work dealing with linear
representation. We roughly classify them into two kinds.

The first one is probabilistic model based method. It has
strong connection with EDA, i.e. evolving linear solution
with the guidance of probabilistic model. It includes mainly
following three projects.

Probabilistic Incremental Program Evolution (PIPE) [22]
combines probability vector coding of program instructions,
Population-Based Incremental Learning [3], and tree-coded
programs. PIPE iteratively generates successive populations
of functional programs according to an adaptive probability
distribution, represented as a Probabilistic Prototype Tree
(PPT), over all possible programs. Each iteration uses the
best program to refine the distribution. Thus, the structures
of promising individuals are learned and encoded in PPT.

Extended Compact Genetic Programmming (ECGP) [23]
is a direct application of ECGA [6] in tree representation.
Marginal product models (MPMs) are used to model the
population of genetic programming. MPMs are formed as
a production of marginal distribution on a partition of the
tree. ECGP decomposes or partitions the prototype tree into
subtrees and builds the probabilistic models for each subtree.
Apparently, the subtrees are taken as independent probabilistic
variables.

Estimation of Distribution Programming (EDP) [30] tries to
model the dependency of adjacent nodes in GP tree. Although
there is a few possible dependencies among the adjacent nodes,
only the conditional probability of child node given parent
node is considered in this research.

The second kind is grammar model based method. Although
stochastic grammar model is probabilistic model, it is usu-
ally presented in very specialized literature and it has quite
different learning method. Therefore, for sake of clarity, we
classify it into another category. Grammar, which is widely
used to model the internal hierarchical structure sentences, is
one of ideal formalisms for modeling GP style tree structure.
The grammar model based method includes Whigham’s very
early work [29], ant-TAG [1], Program Evolution with Explicit
Learning (PEEL) [24].

This second kind of work has some connection with
Grammar Guided Genetic Programming (GGGP), i.e. using
grammar to constrain search space. The individual GP tree in
GGGP must respect the grammar. This overcomes the closure
problem in GP and provides a more formalized mechanism
for typing (cf. strongly-typed genetic programming). Actually,
the grammar model can do more than just constrain the
search space. Whigham’s work [29], apart from normal GGGP,
grammar is slightly modified during the search. The updated
grammar represent the cumulated knowledge found in the
process of search.

The other works, such as ant-TAG and PEEL, are radically
different from normal GP and more like EDA style evolution.
In both of these work, grammars are keeping updated based on

the superior individuals. New generation is obtained by sam-
pling grammars. Conventional GP genetic operators is either
entirely discarded or taken as a background operators. In ant-
TAG, the structure of the grammar is fixed. The probabilities
attached to the grammar are updated. However, fixed grammar
means that the search space can only be explored at fixed
granularity. PEEL addresses this issue by allowing the change
of grammar structure.

C. Overview

In this paper, we propose a new method, Grammar Model-
based Program Evolution (GMPE) to evolved GP style pro-
gram. This work is similar to above mentioned ant-TAG and
PEEL, in the sense that grammar model is used to model
the population. However, the grammar model and its learning
method are very different from them.

We replace common GP genetic operator with a Proba-
bilistic Context-free Grammar (SCFG). In each generation,
a SCFG is learned and then new population is generated
by sampling this SCFG model. Technically, the SCFG is
expressive enough to represent the regularity in and among
individuals. GMPE employs flexible SCFG model, which
makes it more generally applicable than other methods, such
as ant-TAG and PEEL.

On two benchmark problem we have studied, GMPE sig-
nificantly outperforms conventional GP, usually a few times
faster and more reliable.

II. METHOD

A. Algorithm

Same as conventional EC, our GMPE starts with a randomly
generated population. A stochastic grammar model is learned
from the selected individuals of this population. The new
generation is generation by sampling the learned model. Then
next iteration will start again from this new population. The
high level algorithm is illustrated as a flow char in Fig. 1.

Learn SCFG mdoel from Selected Individuals

Evaluate and Select

Sample SCFG Model to Obtain New Population

Randomly Generate Initial Population

Fig. 1. Flow chart of GMPE

Since this high level algorithm is consistent with other EDA
methods, we won’t give more discussion on this. In the next
subsection, we would mainly focus on the stochastic grammar
model, which plays a critical role in GMPE.

B. Model Learning

In this research, Stochastic Context-free Grammar (SCFG)
are chosen as the model.

Actually, in GP, grammar, in particular Context-free Gram-
mar (CFG), has been used to constrain search space [21], [28].
However, since grammar is a formal model for language, both
natural and formal language, it can be more than just the
constraint of search space. If we take the GP individual as
string/sentence, it is not hard to see that population evolved,
corresponding to corpus in Natural Language Processing
(NLP), can be modeled by the grammar as well.

This subsection is organized as follows. In II-B.1, we
would elaborate on the definition of SCFG and how to sample
SCFG to generation the individuals. In II-B.2, the problem of
learning grammar given a set of superior individuals as training
samples is discussed. The learning method in this work is
simple hill-climbing search. When searching for grammars,
we need a measure to compare grammars. We derives this
criteria based on minimal encoding inference. This measure is
presented in II-B.3.
1) Stochastic Context-free Grammar: A stochastic con-

textfree grammar (SCFG) M consists of

• a set of nonterminal symbols N ,
• a set of terminal symbols (or alphabet) Σ,
• a start nonterminal S ∈ N ,
• a set of productions or rules R,
• production probabilities P (r) for all r ∈ R.
• The productions are of the form

X → λ

where X ∈ N and λ ∈ (N ∪ Σ)∗ . X is called the
lefthand side (LHS) of the production, whereas λ is the
righthand side (RHS).

If X → λ is a production of R, the for any strings γ
and δ in (N ∪ Σ)∗, we define γSδ ⇒ γαδ and we say that
γSδ directly derives γαδ in M . We say β can be derived
from α, denoted α

∗⇒ β, if there exists a sequence of direct
derivations α0 ⇒ α1, α1 ⇒ α2, . . . , αn−1 ⇒ αn where
α0 = α, αn = β, αi ∈ (N ∪Σ)∗, and n ≥ 0. Such a sequence
is call a derivation. Thus a derivation corresponds to an order
of applying productions to generate a string. The probability
of a derivation is the production of the probabilities of all
the production rules involved. Sampling a SCFG grammar
in this paper means deriving a set of strings from the given
SCFG grammar. A LHS may have more than one RHSs. When
deriving string, if we come to this kind of LHS, we need
to choose one of its RHSs. SCFG has probability component
attached to each rule (more accurately to each RHS). We need
to choose the RHS based on its probability.
2) Learning method: We use a specific-to-general method

to search for good grammar, motivated by [25]. We start from
a very specialized grammar which covers only the training
examples (selected superior individuals). Then merge operator
is employed among the rules to generalize the initial grammar.

Merger operator take two rules and unify its LHS with one
symbol. For example, given two rules

X1 → λ1

X2 → λ2

after merge

Y → λ1

Y → λ2

All the other occurrence of X1 and X2 in the grammar
should be replaced by Y . The reason that the merge operator
generalized grammar is that before merge two rules have its
own RHS, after merge two rules share these two RHSs, i.e.
the merged grammar can cover more strings.

The search strategy in this research is simply hill-climbing,
i.e. we randomly merge two rules in the grammar, if the score
of grammar improves, this merge is accepted; we keep merging
until no improvement can be found. The scoring method will
be presented in the next section.
3) Scoring: During search, we need to compare grammars.

In this case, we use hill-climbing. Therefore, we need to
measure whether specific merge improves grammar model
or not. We use minimum length encoding inference, usually
referred to as Minimum Message Length (MML) [26], [27]
or Minimum Description Length (MDL) [20] to measure the
superiority of the grammar. In the remaining part of this paper,
MML is employed to generally refer to minimum encoding
inference.

We want to find a grammar which has low complexity but
can cover training samples well. MML gives a theoretically
sound framework to balance these two factors. We want to
find a model (grammar in this case) to minimize the cost of
coding the given data. The cost of coding the given data is the
sum of the cost of coding the model and the cost of coding
the data with the help of the model. Formally, we want to
minimize

L(D) = L(G) + L(D|G) (1)

where D is the data (the corpus), G is the grammar and L(X)
is the cost of coding X .

Eq. 1 is very intuitive.The two-part message states the cost
of coding SCFG in the first part L(G) and then the cost of
coding data (training samples) given model (grammar) in the
second part L(D|G).

The message length of L(D|G) is negative logarithm prod-
uct of the probabilities of training samples (selection individ-
uals). Each individual has a derivation. The probability of the
individual is the probability of its derivation. The probability
of entire set of selected individuals (training samples) is the
production of probabilities of all individuals.

L(G) requires the statement of the inferred SCFG. Although
there are some rough estimations of L(G) in the literature,
they are not adequate for our purpose. We have to derived our
calculation. To state a SCFG, we need to state its names of

terminal symbols, number of terminals, number of nontermi-
nals, the RHS of each rule, the probabilities of each rule and
which RHS correspond to which LHS. Formally, we have

L(G) = L(names of terminal symbols) (2a)

+ L(N) + L(Σ) (2b)

+ L(grouping of LHS) (2c)

+ L(RHS of production rule) (2d)

+ L(prob. of RHS for each nonterminal) (2e)

where:

• The first term L(names of terminal symbols) (Eq. 2a) is
the length of coding names of terminal symbols. This
will be ignored because the cost is the same regardless
of how many merge applied.

• The terms L(N) and L(Σ) (Eq. 2b) are the cost of coding
The number of terminals and non-terminals, respectively.
They can be calculated using Rissanen’s methods of
coding integer [20]. The length of coding integer N is
log∗(N) = log N + log log N + log log log N + Only
positive terms are included.

• Since we do not code the LHS of the rule, we need to
state which LHSs correspond to the same RHS. Let P be
the total number of production rules (P ≥ N). The term
L(grouping of LHS) should be L(P)+L(partition(P)),
partition(P) is number of possible partitions of integer
P .

• Eq. 2d is the length of coding the RHS of each rule.
The total number of distinct symbol is N + Σ. Using
fixed coding scheme, each of them needs log(N + Σ)
bits to code. Suppose the total number occurrences of
symbols on RHSs is m, the total cost of coding them is
(m + 1) log(N + Σ).

• The last term Eq. 2e is probabilities of production rules.
Some LHS has more than one RHS. When deriving
individuals, we need to know at what probability we
replace this LHS with which RHS. Hence we need to
record this probability. More precisely, we record the
frequencies which will be then normalized to obtain
the probabilities. We prefer very skewed probabilities
distribution to uniform distribution because this means
we would have less uncertainty. This preference can be
modeled by a symmetric Dirichlet prior.

MML(θ, Dn, αi) = −
C∑

i=1

log(θni+αi− 1
2

i)

+
C − 1

2
log n − C − 1

2
log 12

+ log BC(α1, ..., αC)

(3)

where θi = ni+αi

n+α0
, αi(i �= 0) is predefined parameters,

α0 =
∑C

i=1 αi, C is number of different RHS this LHS
has, ni is the frequency of i-th RHS, n =

∑C
i=1 ni, BC()

is Beta function. Please refer to the Appendix for details.

III. EXPERIMENTAL STUDY

A. Royal Tree Problem

Royal Tree Problem [19] is designed to be a difficult
problem for GP. In this experiment, we use level-e Royal
Tree Problem. This problem has five nonterminals a, b, c, d, e
with arity 1,2,3,4,5 respectively and one terminal x. The
perfect solution for this problem is complete full tree, with
nonterminal e as root, only d appear on level 2, only c level
3, and so on and only x on level 6, the deepest level. The
fitness is related to the resemblance to this perfect solution
and designed to encourage searching this solution in a bottom
up manner. The fitness of perfect solution is 122,880. For more
detail of Royal Tree Problem, please refer to [19].

In this experiment, the setting for GMPE is population
size 60, truncation selection, selection rate 50%, α = 0.5,
maximum depth 6. We conducted 50 runs. The cumulative
frequency of successful runs is illustrated in Fig. 2. As we
can see, around 80% of runs end before generation 4000 (only
4000× 60 = 240, 000 individual evaluations and all runs end
roughly at 16,000 generation (only 16, 000 × 60 = 960, 000
individual evaluations).

0 2000 4000 6000 8000 10000 12000 14000 16000
0

20

40

60

80

100

Fig. 2. Cumulative frequency of success measure of GMPE on Royal Tree
Problem

Royal Tree Problem is very difficult problem for GP. We
present a comparison in Table I to show the relative per-
formance of GMPE. GP statistic of the problem is adopted
from [19]. Several GP settings are tried in [19]. We select GP
of the best setting, population size 3500, internal crossover
0.875, external crossover 0.075, mutation rate 0.05, maximum
depth 17, generation 500, over-selection.

Table I shows that with 1,750,000 evaluations
(population size 3500 × generation 5000 = 1, 750, 000),
50% GP runs succeed. To achieve the same rate of successful
runs, GMPE only need 92,460 (60 × 1541 = 92, 460)
evaluations. We define a simple measure speedup, similar
to the measure in [11], to give a clearer impression of the
relative performance of GMPE to GP. Given rate of successful
runs δ,

speedupδ =
Number of Evaluations of GP

Number of Evaluations of GMPE
(4)

Therefore, in this experiment, speedup50% = 1750000
92460 ≈ 18.9.

Under this measure we say the GMPE is 18.9 times faster
in terms of number of evaluations given rate of successful
runs 50%. We use different maximum depth in GP and
GMPE experiments. The nature of the problem make it only
possible to discover from small partial solution and then to
combine them into bigger partial solution until find the final
solution. The failed GP runs did be trapped with local optimum
which small partial solution. The difficulty of this problem
is to escape from local optimum, not the size of the search
space. This suggests the different maximum tree would not
have significant impact on the performance of the algorithms.
However, we do plan to include fairer comparison in the final
version of this paper.

TABLE I

COMPARISON OF GP AND GMPE ON ROYAL TREE PROBLEM.

HORIZONTAL AXIS IS THE NUMBER OF GENERATIONS AND THE VERTICAL

AXIS IS THE PERCENTAGE OF SUCCESSFUL RUNS.

Method Pop Gen No. Eval./Run Succeed Speedup

GMPE 60 1541 92,460 50% 18.9

GP 3500 500 1,750,000 50%

B. Max Problem

Max problem [9] has only one terminal x with value 0.5
and two nonterminal + and ×. The purpose is to find a tree
with maximum fitness under some tree size constraint. In this
experiment, we use maximum depth as constraint and set it
the maximum depth limit to 7 (root is 1) in this experiment.
The maximum fitness is 65536.

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

Fig. 3. Cumulative frequency of success measure of GMPE on Max Problem.
Horizontal axis is the number of generations and the vertical axis is the
percentage of successful runs.

The result of GP runs are from [9]. Briefly, the setting of
GP is population size 200, generation size 500, tournament
selection, 99.5% crossover, no mutation. In this experiment,
the setting for GMPE is population size 60, truncation selec-
tion, selection rate 50%, α = 2.0. We conducted 50 runs.

The cumulative frequency of successful runs is illustrated in
Fig. 3 and the comparison with GP is shown in Table. II. The
speedup60% is 7.4. Therefore, in this experiment, GMPE is
also significantly outperform GP.

TABLE II

COMPARISON OF GP AND MINE ON MAX PROBLEM

Method Pop Gen No. Eval./Run Succeed Speedup

GMPE 60 224 13,440 60% 7.4

GP 200 500 1,000,00 < 60%

IV. DISCUSSION

Evolving program with tree structure (like GP tree), is
far more complex than simply applying EDA, which evolves
solution with linear representation, to tree representation. The
complexity due to the tree structure is four folded and our
method with grammar model can address most of these issues.

1) Tree representation has its internal structure – intrin-
sic hierarchical structure. The relations/dependencies
among parent and child nodes are undoubtedly stronger
than among others. When constructing models, this
internal structure has to be respected, i.e. the model has
to reflect not only the dependencies among the nodes but
also the structure constraint. Grammar which is invented
to represent internal structure of the language fits exactly
this purpose.

2) The semantics of nodes in tree also makes evolving
program with GP style tree representation very different
from its linear representation counterpart. In evolving
linear structure, such as EDA, usually we assume the
semantics is attached to the locus. However, in tree
representation, The meaning of the node has to be
interpreted together with its surrounding context. For
example, in one of the standard GP benchmark problem
– Artificial Ant Problem [8], the node move will have
entirely effect depending on the current position of the
ant. The model chosen for evolving tree structure has to
be able to represent this strong local dependency as well
as dependency at larger scale. Context-free Grammar
and more expressive grammar can very well model the
local and long distance dependencies.

3) In the tree representation, although, in most of circum-
stances, the meaning of the node is closely related to it
surrounding context, it is also common that the building
blocks, which are relative independent sub-solutions,
are not, or at least no strictly, position dependent. For
example, a building blocks , which is a subtree in
this example, can be written as (+(a, b)). This subtree
can occur in position A, B or C in tree (+(+(A,B),C))
and have the same contribution to the overall fitness.
A position dependent model, such as PIPE [22] and
other prototype tree based work, has to learn building
blocks at these positions separately. Grammar model

does not assume any position dependency. The common
structures (building block) among individuals, even if
they are not at the same position, can be represented
and preserved by grammar model.

4) The individual trees have no fixed complexity. Even if
we do impose some limitation, such as, maximum depth,
maximum number of nodes, the individual complexity
significantly varies from individual to individual, from
generation to generation. The fixed model, such as
prototype tree in [22], which resembles the models in
EDA with fixed size in terms of number of variables,
cannot reflect this variation. Therefore, the model with
fixed complexity might be either at some stage too
simple to express all the necessary dependencies or
at other stage so complex that requires more time to
learn unnecessary dependencies. With proper learning
method, the grammar model may very well reflect the
superior individuals (training samples) and generalize to
certain extent.

We notice that although early work of using model to evolving
program with tree representation [22] was published in 1997,
the amount of work is entirely incomparable with the amount
of work in evolving linear structure, such as EDA. We believe
this is due the above mention difficulties. It is clear from
the above analysis that our GMPE with grammar model can
address most of these difficulties.

V. CONCLUSION

In this paper we propose a new method for program evo-
lution. We choose Stochastic Context-free Grammar (SCFG)
to model superior tree-form individuals. The new population
is generated by sampling this grammar model. Because the
grammar model can better present, preserve and promote
the common structures in superior individuals, usually called
building blocks, than conventional GP, our method signifi-
cantly outperform conventional genetic programming on two
benchmark problems we studies.

The future research issues include more thorough analysis
and direct evidence of what has been learned in the grammar,
more efficiently grammar learning method, possible extraction
of knowledge embedded in the learned grammar, experiments
on noisy data.

APPENDIX A: COST OF CODING PROBABILITY

DISTRIBUTION OF SCFG

A. Dirichlet Prior

A symmetric Dirichlet prior has the form:

P (θ) ∝
C∏

i=1

θαi

i (5)

where α = 1.0 corresponds to the uniform prior.
A Dirichlet prior is a conjugate prior because it has the same

form as the likelihood. This makes the posterior distribution a

simple product of likelihood and prior:

P (θ|Dn) ∝
C∏

i=1

θni+α−1
i (6)

where Dn are the n observations (e.g. for C = 2, n = 5,
D5 = (0, 1, 1, 0, 0)).

Notice we have used proportional to in the two above
equations. To make these a proper distribution, we need a
normalising term which is a C-dimensional beta function:

BC(α1, ..., αC) =
∏C

i=1 Γ(αi)
Γ(α0)

(7)

where α0 =
∑C

i=1 αi.

Γ(n + 1) = n! (8)

where n is an integer.
The Dirichlet distribution is then:

P (θ) =
1

BC(α1, ..., αC)

C∏
i=1

θαi

i (9)

B. Costing of coding probability distribution with Dirichlet
prior

For number of classes C, number of data n, the cost of
coding this data is:

MML(θ, Dn) = − log(P (θ|Dn)P (θ) + log

√
F (C − 1)

12C−1
)

(10)
where F (k) is the Fisher Information term.

For Dirichlet distributions, Fisher Information is

F (k) =
nC−1

n + C
2

(11)

where n is the number of data items.
Putting it all together gives:

MML(θ, Dn, αi) = −
C∑

i=1

log(θni+αi− 1
2

i)

+
C − 1

2
log n − C − 1

2
log 12

+ log BC(α1, ..., αC)

(12)

where θi = ni+αi

n+α0
.

C. Example for Grammar Fragment

Given grammar:

A -> B 1
A -> C 3

With αi = 0.5, C = 2,

MML = − log
1 + 0.5
4 + 1

1+0.5−0.5

− log
3 + 0.5
4 + 1

3+0.5−0.5

+
2 − 1

2
log 4 − 2 − 1

2
log 12

+ log B2(0.5, 0.5)
= 1.20397 + 1.07003 + 0.69315
− 1.24245 + 1.14473
= 2.86943

Throughout the paper, we use base e for logarithm.

REFERENCES

[1] H. A. Abbass, N. X. Hoai, and R. I. McKay. AntTAG: A new method
to compose computer programs using colonies of ants. In The IEEE
Congress on Evolutionary Computation, pages 1654–1659, 2002.

[2] S. Baluja and S Davies. Using optimal dependency-trees for combi-
natorial optimization: Learning the structure of the search space. In
Proc. 1997 International Conference on Machine Learning, 1997. Also
Available as Tech Report: CMUCS -97-107.

[3] Shumeet Baluja. Population-based incremental learning: A method for
integrating genetic search based function optimization and competitive
learning. Technical Report CMU-CS-94-163, Pittsburgh, PA, 1994.

[4] Jeremy S. de Bonet, Charles L. Isbell, Jr., and Paul Viola. MIMIC:
Finding optima by estimating probability densities. In Michael C. Mozer,
Michael I. Jordan, and Thomas Petsche, editors, Advances in Neural
Information Processing Systems, volume 9, page 424. The MIT Press,
1997.

[5] R. Etxeberria and P. Larrañaga. Global optimization with bayesian
networks. In Second Symposium on Artifcial Intelligence(CIMAF-99),
pages 332–339, Cuba, 1999.

[6] G. Harik. Linkage learning via probabilistic modeling in the ECGA.
Technical Report IlliGAL Report No. 99010, University of Illinois at
Urbana-Champaign, 1999.

[7] G. R. Harik, F. G. Lobo, and D. E. Goldberg. The compact genetic
algorithm. IEEE Transaction on Evolutionary Computation, 3(4):287–
297, November 1999.

[8] John R. Koza. Genetic Programming: On the Programming of Comput-
ers by Means of Natural Selection. MIT Press, Cambridge, MA, USA,
1992.

[9] W. B. Langdon and R. Poli. An analysis of the MAX problem
in genetic programming. In John R. Koza, Kalyanmoy Deb, Marco
Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo,
editors, Genetic Programming 1997: Proceedings of the Second Annual
Conference, pages 222–230, Stanford University, CA, USA, 13-16 July
1997. Morgan Kaufmann.

[10] P. Larrañaga and J. A. Lozano. Estimation of Distribution Algorithms: A
New Tool for Evolutionary Computation. Kluwer Academis Publishers,
2001.

[11] Ryszard S. Michalski. Learnable evolution model: Evolutionary pro-
cesses guided by machine learning. Machine Learning, 38:9–40, 2000.

[12] H. Müehlenbein and G. Paaß. From recombination of genes to the
estimation of distributions i.binary parameters. In Lecture Notes in
Computer Science 1411: Parallel Problem Solving from Nature, PPSN
IV, pages 178–187. 1996.

[13] H. Müehlenbein and G. Paaß. From recombination of genes to the
estimation of distributions i.binary parameters. In Lecture Notes in
Computer Science 1411: Parallel Problem Solving from Nature, PPSN
IV, pages 178–187. 1996.

[14] Heinz Mühlenbein and Thilo Mahnig. The factorized distribution
algorithm for additively decompressed functions. In 1999 Congress on
Evolutionary Computation, pages 752–759, Piscataway, NJ, 1999. IEEE
Service Center.

[15] Martin Pelikan. Bayesian optimization algorithm: From single level
to hierarchy. PhD thesis, University of Illinois at Urbana-Champaign,
Urbana, IL, 2002. Also IlliGAL Report No. 2002023.

[16] Martin Pelikan, David E. Goldberg, and Erick Cantú-Paz. BOA: The
Bayesian optimization algorithm. In Wolfgang Banzhaf, Jason Daida,
Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and
Robert E. Smith, editors, Proceedings of the Genetic and Evolutionary
Computation Conference GECCO-99, volume I, pages 525–532, Or-
lando, FL, 13-17 1999. Morgan Kaufmann Publishers, San Fransisco,
CA.

[17] Martin Pelikan, David E. Goldberg, and Fernando Lobo. A survey of
optimization by building and using probabilistic models. Technical Re-
port IlliGAL Report No. 99018, Illinois Genetic Algorithms Laboratory,
University of Illinois at Urbana-Champaign, Sept 1999.

[18] Martin Pelikan and Heinz Mühlenbein. The bivariate marginal distribu-
tion algorithm. In R. Roy, T. Furuhashi, and P. K. Chawdhry, editors,
Advances in Soft Computing - Engineering Design and Manufacturing,
pages 521–535, London, 1999. Springer-Verlag.

[19] William F. Punch, Douglas Zongker, and Erik D. Goodman. The royal
tree problem, a benchmark for single and multiple population genetic
programming. In Peter J. Angeline and K. E. Kinnear, Jr., editors,
Advances in Genetic Programming 2, chapter 15, pages 299–316. MIT
Press, Cambridge, MA, USA, 1996.

[20] J Rissanen. Stochastic Complexity in Statistical Inquiry. World Scientific
Press, Singapore, 1989.

[21] Conor Ryan, J. J. Collins, and Michael O Neill. Grammatical evolution:
Evolving programs for an arbitrary language. In Wolfgang Banzhaf,
Riccardo Poli, Marc Schoenauer, and Terence C. Fogarty, editors,
Proceedings of the First European Workshop on Genetic Programming,
volume 1391, pages 83–95, Paris, 14-15 1998. Springer-Verlag.

[22] R. P. Salustowicz and J. Schmidhuber. Probabilistic incremental program
evolution. Evolutionary Computation, 5(2):123–141, 1997.

[23] Kumara Sastry and David E. Goldberg. Probabilistic model building and
competent genetic programming. Technical Report IlliGAL Report No.
2003013, Illinois Genetic Algorithms Laboratory (IlliGAL), Department
of General Engineering,University of Illinois at UrbanaChampaign, 117
Transportation Building,104 S. Mathews Avenue, Urbana, IL 61801,
April 2003.

[24] Y. Shan, R. I. McKay, H. A. Abbass, and D. Essam. Program evolution
with explicit learning: a new framework for program automatic synthe-
sis. In Proceedings of 2003 Congress on Evolutionary Computation,
Canberra, Australia, Dec 2003. University College, University of New
South Wales, Australia.

[25] Andreas Stolcke. Bayesian Learning of Probabilistic Language Models.
PhD thesis, University of California, Berkeley, CA, 1994.

[26] C. S. Wallace and D. M. Boulton. An information measure for
classification. The Computer Journal, 11(2):185–194, 1968.

[27] C. S. Wallace and D. L. Dowe. Minimum message length and
kolmogorov complexity. The Computer Journal, 42(4):270–283, 1999.

[28] P. A. Whigham. Grammatically-based genetic programming. In
Justinian P. Rosca, editor, Proceedings of the Workshop on Genetic
Programming: From Theory to Real-World Applications, pages 33–41,
Tahoe City, California, USA, 9 1995.

[29] P.A. Whigham. Inductive bias and genetic programming. In Proceedings
of First International Conference on Genetic Algorithms in Engineer-
ing Systems: Innovations and Applications, pages 461–466. UK:IEE,
September 1995.

[30] Kohsuke Yanai and Hitoshi Iba. Estimation of distribution programming
based on bayesian network. In Proceedings of Congress on Evolutionary
Computation, pages 1618–1625, Canberra, Australia, Dec 2003.

