
Program Evolution with Explicit Learning

Y. Shan, R. I. McKay, H. A. Abbass, D. Essam
School of Computer Science, University College

University of New South Wales Australia Defence Force Academy
Canberra, Australia

{shanyin,rim,abbass,daryl}@cs.adfa.edu.au

Abstract- In Genetic Programming (GP) and most
other evolutionary computing approaches, the knowl-
edge learned during the evolutionary processing is im-
plicitly encoded in the population. A small family of
approaches, known as Estimation of Distribution Al-
gorithms, learn this knowledge directly in the form of
probability distributions. In this research, we proposed
a new approach for program synthesis – Program Evo-
lution with Explicit Learning (PEEL), belonging to this
family. PEEL learns probability distributions from pre-
vious generations and stochastically generates new pop-
ulations according to this distribution. PEEL is intrin-
sically different from GP systems because it abandons
conventional GP genetic operators and does not main-
tain a population. On the benchmark problems we have
studied, this approach shows at least comparable perfor-
mance to GP.

1 Introduction

Genetic Programming (GP) [6, 12] is a promising variant of
genetic algorithms that typically evolves hierarchical struc-
tures, often described as programs. Through selection, unfit
individuals are culled, and fitter individuals remain in the
population. Genetic operators, such as crossover and muta-
tion, vary these fitter individuals to explore their surround-
ing search space. In the evolutionary process, the popula-
tion serves as a knowledge pool to implicitly encode the
information describing the search space and characterising
fitter individuals. The search space around the fitter indi-
viduals might be a promising search area, while building
blocks, rather than totally randomly chosen symbols, ex-
changed among individuals might lead to efficient search.
In this sense, GP can be regarded as a learning process.
What is learned is the general salient characteristics of fitter
individuals and promising search areas, implicitly encoded
in the population.

Since we may take GP as a learning process which tries
to characterize what the good individual might look like,
why not make the learning explicit? The concept of ex-
plicit learning in GP has been previously studied. Some
researchers have studied modules in GP in order to explic-
itly make use of building blocks, or to make the crossover
more productive. Probabilistic Incremental Program Evo-

lution (PIPE) [21] is a more radical approach. All these
approaches attempt to explicitly characterize what good in-
dividuals might look like, although by different means.

In this research, we propose a new framework in
this lineage – Program Evolution with Explicit Learning
(PEEL). The Search Space Description Table (SSDT), a
variant of stochastic parametric Lindenmayer Systems (L-
system) [17], is used to describe the search space. A vari-
ant of Ant Colony Optimization (ACO) [8] is the learn-
ing method. Grammar refinement is employed to focus
the search area. The search starts from a minimum SSDT,
which describes the search space at a very coarse resolution.
ACO updates the stochastic components of the SSDT. When
this minimum SSDT is not adequate to focus the search
to more promising, smaller areas of the search space, the
grammar, which is represented as the SSDT, will be refined,
i.e. certain rules in the SSDT will be split. On the bench-
mark problems we have studied, our new method shows at
least comparable performance to Grammar Guided Genetic
Programming (GGGP) [23], (which is probably the nearest
equivalent implicit learning GP system) and to standard GP.

The paper is organized as follows. The next section is
a brief survey of explicit learning in GP. In Section 3, our
new approach is proposed. The section following contains
the experimental details. The conclusions are given in the
final section.

2 Explicit Learning in Genetic Programming

Explicit learning in GP is briefly surveyed in this section. In
GP, the search mechanism is manipulating the individuals
by applying genetic operators. The purpose is to find fitter
individuals, and thus eventually the near-optimal or optimal
solution. In canonical GP, there is no mechanism to describe
what the good individual might look like although this is
exactly what GP search tries to discover.

By explicit learning, we mean applying learning tech-
niques to explicitly describe the characteristics of promising
individuals. More precisely, we wish to describe promis-
ing areas of the search space. By more directly working
on characterizing, finding and manipulating the promising
search area, we hope to obtain better performance.
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2.1 Modularity

Some research suggests, that if building blocks can be cor-
rectly identified and used, the performance of GP can be
significantly improved. This line of research includes Au-
tomatically Defined Functions (ADF) [12], Genetic Library
Builder (GliB) [3] and Adaptive Representation (AR) [19].
The building blocks or modules explicitly characterize what
the promising individuals might look like and where the cor-
responding promising search areas might be.

2.2 Crossover

In [2], two self-adaptive crossover operators, selective self-
adaptive crossover and self-adaptive multi-crossover, are
proposed. These new operators adaptively determine where
crossover will occur in an individual. Experimental results
demonstrate that both of these self-adaptive operators per-
form as well or better than standard genetic programming
crossover. Recombinative guidance for GP is proposed
in [10]. For this, all the performance values for all the sub-
trees of a GP tree are calculated. These values are then used
to decide which subtree will be chosen to apply GP opera-
tions. Although GP with recombinative guidance performs
well on some problems, the definition of subtree value is
problem dependent.

2.3 Probabilistic Incremental Program Evolution
(PIPE)

PIPE [21] combines probability vector coding of program
instructions, Population-Based Incremental Learning [4],
and tree-coded programs. PIPE iteratively generates suc-
cessive populations of functional programs according to an
adaptive probability distribution, represented as a Proba-
bilistic Prototype Tree (PPT), over all possible programs.
Each iteration uses the best program to refine the distri-
bution. Thus, the structures of promising individuals are
learned and encoded in PPT. Good performance was re-
ported over the problems which were studied.

2.4 Related Works in Genetic Algorithms

There is extensive similar work in Genetic Algorithms
(GAs), but the relationships are too distant to cover the field
in detail. Hence, we will mention only two highly relevant
projects.

The first is the Learnable Evolution Model (LEM) [13].
The central engine of evolution in LEM is a machine learn-
ing mode, which creates new populations by employing hy-
potheses about high fitness individuals found in past pop-
ulations. The machine learning mode seeks reasons why
certain individuals in a population are superior to others,
so as to form inductive hypotheses which explicitly charac-
terize good individuals. In experimental evaluations, LEM

significantly outperformed standard evolutionary methods
in terms of the number of fitness evaluations.

The other is estimation of distribution algorithm
(EDA) [14, 16]. EDA uses a probabilistic model of promis-
ing solutions to guide further exploration of the search
space. EDA is a cluster of methods, ranging from meth-
ods that assume the genes in the chromosome are indepen-
dent, through others that take into account pairwise inter-
actions, to methods that can accurately model even a very
complex problem structure with highly overlapping multi-
variate building blocks. Recently, there has been increasing
research interest in this field.

3 Program Evolution with Explicit Learning

In Program Evolution with Explicit Learning (PEEL), tra-
ditional genetic operators are abandoned, and no population
is maintained. Instead, a Search Space Description Table
(SSDT) is used. The SSDT characterizes individuals with
superior fitness and guides the search to promising areas.
The higher level algorithm is sketched as follows:
1. Initialize Search Space Description

Table (SSDT).
2. Generate new population according to SSDT.
3. Learn SSDT from the new population.
4. Refine SSDT if necessary (grammar

refinement).
5. Mutate SSDT.
6. If termination condition is not satisfied,

then go to 2,
else output best individuals found.

The major data structures and procedures will be elabo-
rated in the following subsections.

3.1 Representation of Search Space

The Search Space Description Table (SSDT) is used to rep-
resent the search space. It is a specialized stochastic para-
metric L-system. The SSDT consists of rules; each rule of
the SSDT is defined as follows:

predecessor(parameter : n, l) :

(condition : n = depth and l = location)

→successor1(expression : n← n + 1, l′1)

successor2(expression : n← n + 1, l′2)

. . .

successorm(expression : n← n + 1, l′m)

(pheromone)

where predecessor and successors are the same as in
context-free grammars, pheromone, a term from Ant
Colony Optimization, corresponds to the probability of
choosing this production rule (pheromone is an un-
normalized value; normalization gives us the probabilities)



expr = expr op expr | pre expr | x
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pre = sin | cos | eˆ |ln

Figure 1: Context-free grammar for symbolic regression
problem

and the two parameters n and l are the depth and the rela-
tive location in the tree to be generated. n and l are used in
the conditions which test for matches. When matches oc-
cur, expression increments the depth parameter n so that
next level of the tree can be generated. Note that the only
major difference between this representation and that of L-
systems is the term l′i in the expression. Actually, in the
SSDT, l′i is not recorded since it is implicitly encoded in the
individuals. The reason we have kept l′i in the above formula
is to keep the number of parameters of predecessor and suc-
cessors consistent. The term Left Hand Side (LHS) stands
for both the predecessor and its conditions. Therefore, that
LHS matches means that both predecessors and conditions
match. In the remaining part of this paper, sometimes we
use the term grammar to refer to the SSDT because the
SSDT actually defines a grammar system.

As in Genetic Programming (GP), the individuals gen-
erated in PEEL are trees. Similarly to [7], the location in-
formation in the SSDT is coded as the relative coordinate
in the tree. The position of each node in a rooted tree can
be uniquely identified by specifying the path from the root
to this specific node. A node’s position can therefore be
described by a tuple of n coordinates T = (b1, b2,· · · , bn),
where n is the depth of the node in the tree, and bi indicates
which branch to choose at level i. For example, in Fig 3,
to reach the bottom right-most node in the left tree, from
the root we need to choose the 2nd, 2nd and 0-th branch,
i.e. 0220. Similarly, we can get the location of the left x
at depth 3 in the left tree as 0200. (Note: in this paper the
depth of the root is 0, the branch in each subtree which con-
nects to the left-most child node is the 0th branch and the
left-most child is the 0th child).

3.1.1 Example

For many symbolic regression problems, we may use the
context-free grammar illustrated in Fig 1. expr is the start-
ing symbol. e∧ and ln are exponential, and protected natu-
ral logarithm, respectively.

The initial SSDT representation for the first rule in Fig 1,
which can be used to generate an individual at depth 0,
may be as illustrated in Fig 2. Rules to generate other lev-
els/depths of individuals can be defined in a similar way.
The first condition n = 0 indicates these rules can only
be used to generate the top level (depth = 0) of the tree.
The pheromone levels are initialized uniformly, and are then

expr(n,l):(n=0 and l=#) = expr(n+1,0) op(n+1,1)
expr(n+1,2) (pheromone:1)

expr(n,l):(n=0 and l=#) = pre(n+1,0) expr(n+1,1)
(pheromone:1)

expr(n,l):(n=0 and l=#) = x(n+1,0) (pheromone:1)

Figure 2: Initial rules of the SSDT for generating depth 0 of
tree

subject to update by the learning method – Ant Colony Opti-
mization in this work. All the locations are initialized to the
value #, which means “don’t care” or “match to any value”.
When necessary, the grammar will be refined and location
information incrementally added. Note the predictable val-
ues for parameters of the terms on the right-hand side (al-
ways n+1, and then the location on the LHS with appropri-
ate suffix). For clarity, in the following parts of the paper,
these parameters will be omitted.

Controlling the size of the tree in terms of depth is not
a trivial task for GGGP [20, 23]. However, this SSDT rep-
resentation provides a natural way to do it. In this exam-
ple, if the maximum depth is 14, we may simply set the
pheromone levels of the following two rules to be 0 at the
second last level (n = 13):
expr(n,l):(n=13 and l=0) = expr op expr (ph 0)
expr(n,l):(n=13 and l=1) = pre expr (ph 0)

Since these two rules are the only recursive rules, set-
ting their pheromone levels to 0 simply stops recursive rule
rewriting. Therefore, the tree will stop growing at the next
level (n = 14).

3.2 Generation of Individuals

The generation of individuals, in this research, is similar to
the initial generation of individuals for GGGP [23]. The two
major differences are: firstly, Left Hand Side (LHS) match-
ing, i.e. besides matching the predecessor, the conditions
also need to be satisfied, and secondly, when deciding be-
tween rules with matching LHSs, one of the rules is chosen
stochastically according to the attached probabilities.

For example, to generate an individual, given an ini-
tial SSDT derived from the context-free grammar shown in
Fig 1, we need to rewrite the starting symbol expr, which
is the root of the new individual. Since this expr is the root,
and no location requirement is available, we get n = 0 and
l = #. Searching the SSDT, we find three rules, illustrated
in Fig 2, that match this left hand side, i.e. predecessor
expr and its conditions n = 0 and l = #. Each of these
three rules has the probability 1/(1 + 1 + 1) to be chosen.
Assuming that the first rule in Fig 2 is chosen, then we have
an incomplete individual of depth 1, which looks like the
upper part of the left tree in Fig 3. For all non-terminal leaf
nodes, this process is repeated until a closed individual is
generated.
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3.3 Learning Methods

In this work, Ant Colony Optimization (ACO) is used to
update the pheromone levels. ACO is a kind of positive
feedback system. A colony of ants concurrently and asyn-
chronously move through adjacent states of the problem by
moving through neighbor nodes. By moving, ants incre-
mentally build solutions to the optimization problem. Once
an ant has built a solution, or while the solution is being
build, the ant evaluates the solution and deposits informa-
tion about its goodness or fitness on the pheromone trails of
the connections it used. This pheromone information then
directs the search of the future ants. For a good introduction
of ACO, [8] is recommended; [1] is a highly related work,
which uses ACO to compose programs.

In PEEL, ACO is used as the major learning mecha-
nism. For each iteration of the PEEL algorithm, we do two
pheromone updates:

1. decrease the pheromone of those rules which were
used to generate each individual in this iteration,

2. increase the pheromone of those rule which are used
to generate each elite individual (the individuals
which are the best so far; we maintain a group of eli-
tists.)

In more detail, assume the probability of rulei needs to
be updated according to individualj , the probability update
formula for increasing pheromone is:

pheromonei =pheromonei × decay rate

+ (1− decay rate)× fitnessj

whilst, for decreasing pheromone, the formula is:

pheromonei = pheromonei × decay rate

where decay rate is a predefined value, fitnessj is the fit-
ness of individualj, calculated as:

fitnessj = 1/(1 +
∑

case

|estimatedcase,j − actualcase|)

where actualcase is the actual value of case while
estimatedcase,j is the result of evaluation of individualj

over case. To obtain the probabilities, normalization needs
to be applied to the pheromone. Normalization is applied
independently whenever a Left Hand Side (LHS) must be
matched. It is applied to all rules which match that particu-
lar LHS.

The rationale of these updates is quite clear. Decreas-
ing pheromone directs ants away from the paths which have
been visited and, thus toward exploring different parts of the
search space, while increasing pheromone on good paths
encourages exploitation of those parts of the search space.

3.4 Grammar Refinement

As can be seen, the initial SSDT represents the search space
at a very coarse level. If the problem is complex, this coarse
description is inadequate. However, if this occurs we can
refine the grammar so that the search space is covered by a
finer grid, thus enabling promising areas of the search space
to be searched more intensively.

For example, assume we have the grammar illustrated in
Fig 1. One of its initial rules in the SSDT representation is:
expr(n,l):(n=1 and l=#) = expr op expr (ph:p)

This rule would be applied to rewrite predecessor expr
at depth 1. l = # implies that no location information will
be considered. Therefore, at depth 1, as long as predecessor
expr is matched, the rule would be applied with probability
p no matter where the predecessor expr is. As a result, this
rule cannot distinguish between the derivations for x− (x+
x) and (x + x) − x given in Fig 3 as these two trees must
have the same probability of generation for any probability
distribution over our original grammar.

Thus, it is necessary for the system to be able to increase
the expressiveness of the grammar through refinement. For
example, if we split the above rule into three:
expr(n,l):(n=1 and l=0) = expr op expr (ph:p0)
expr(n,l):(n=1 and l=1) = expr op expr (ph:p1)
expr(n,l):(n=1 and l=2) = expr op expr (ph:p2)

then the two trees in Fig 3 may have different generation
probabilities, because at depth 1 (n = 1) the expr at loca-
tion 2 will be rewritten as expr op expr with probability p2
while at location 0, it will be rewritten with probability p0.

Note that in PEEL, Left Hand Side (LHS) matching is
partial matching. For example in the left tree in Fig 3, the
complete location of the right-most expr at depth 1 is (0 2).
The rule:
expr(n,l):(n=1 and l=2) = expr op expr

can match even if its predecessor location is l = 2. In
these circumstances, we start matching from the right of the
complete location string since it is the closest (or most rele-
vant) information. Therefore, in this example, for the com-
plete location (0 2), both l = 2 and l = 02 can match, but
not l = 20.

The key idea of grammar refinement used here, is to split
the production rule using more location information. Two



steps are needed to refine the grammar: 1) detect the most
overloaded Left Hand Side (LHS), 2) split the most over-
loaded LHS.

The overloaded LHSs are those that are both highly in-
fluential and badly converged. More formally, we calculate
the burden for each LHS in the grammar. The LHS with the
largest burden is the most overloaded LHS. The burden of
LHS L is defined as.

burdenL = (entropyL)a × (pheromoneL)b

The entropy of LHS L measures the convergence of this L,
while the pheromone reflects the importance. a and b are
system parameters used to balance the influence of the two
terms. In this initial work, we set a = b = 1.

For example, the burden of LHS L with predecessor
expr and condition n = 0 and l = # in Fig 2 can be calcu-
lated as follows.

probabilityi
L =

pheromonei
L∑3

i=1
pheromonei

L

=
1

(1 + 1 + 1)
=

1

3

burdenL =(
3∑

i=1

(−probabilityi
L × log probabilityi

L))a

× (
3∑

i=1

pheromonei
L)b

=(−
1

3
log2

1

3
−

1

3
log2

1

3
−

1

3
log2

1

3
)

× (1 + 1 + 1) ≈ 4.75

where pheromonei
L is the pheromone of i-th rule which has

the same LHS L, i.e. has same predecessor expr and sat-
isfies condition n = 0 and l = #, probabilityi

L is the cor-
responding probability, which is the normalized pheromone
values.

Once the location information is added, one production
can be split into several. For example, the following rule
expr(n,l):(n=1 and l=#) = expr op expr (ph:p)

might be split into three rules according to the grammar
in Fig 1 :
expr(n,l):(n=1 and l=0) = expr op expr (ph:p)
expr(n,l):(n=1 and l=1) = expr op expr (ph:p)
expr(n,l):(n=1 and l=2) = expr op expr (ph:p)

Thus, initially the new rules each have the same
pheromone as the original one. However, after further learn-
ing, i.e., updating the pheromone, these three rules might
have different probabilities. Note that the location informa-
tion is added incrementally – each time, only the minimum
location information is added.

As can be seen, PEEL is an incremental learning ap-
proach. It starts from a minimum SSDT which describes
the search space very roughly. Then, when necessary, rules
are added to the SSDT to focus the search to a finer level.

3.5 Mutation of the SSDT

A key exploration mechanism of PEEL is mutation of the
SSDT. The active rules which were used to generate the eli-
tists (the best individuals found so far) and those rules which
have the same LHS as these active rules, are mutated with
probability pmutation. There is a risk that the number of
rules mutated might increase too fast as the size of individ-
uals increases, so pmutation depends inversely on the total
number of rules which are used for elitists:

pmutation = cmutation/nrules

where cmutation is a predefined mutation coefficient, and
nrules is the number of rules that are to be mutated.

In this paper, the purpose of mutation is to allow the
search to escape from the areas of previously learned knowl-
edge, and thus explore different parts of the search area.
Consequently, our mutation will force converged LHSs to
partially lose their convergence, thus encouraging explo-
ration. The mutation equation is defined as:

pheromonei =pheromonei

+ mi× (pheromonei − pheromoneaverage)

where pheromonei is the pheromone of rulei which is
being mutated, mi is a predefined mutation intensity and
pheromoneaverage is the average pheromone of all rules
which have the same LHS as rulei.

4 Experiments

Two experiments have been conducted to test the perfor-
mance of the PEEL. The context free grammar used by both
experiments can be found in Figure 1.

4.1 Function regression

Function regression is often used in the GP literature for
evaluating the performance of algorithms. In this work, the
function to be approximated is adopted from [21], the func-
tion is:

f(x) = x3×e−x×cos(x)×sin(x)×((sin(x))2×cos(x)−1)

This complicated function is chosen to prevent the algo-
rithm from simply guessing it. The following results com-
pare PEEL and Grammar Guided Genetic Programming
(GGGP). The results of PIPE in [21] over the same prob-
lem will also be briefly mentioned. However it is almost
impossible to make a fair comparison, because the results
given in [21] are in diagram format only, and in any case,
PIPE adds ephemeral random constants while PEEL does
not.



Algorithm mean std. dev. max median min
PEEL 6.79 4.91 18.90 5.21 0.68

GGGP 7.87 3.54 14.00 7.56 0.95

Table 1: Comparison of PEEL and GGGP

The fitness cases were sampled at 101 equidistant points
in the interval [0,10], 100,000 program evaluations were set
for both PEEL and GGGP, the same as in [21]. The other
settings for PEEL were population size 10, maximum depth
15, mutation coefficient cmutation = 0.5, mutation inten-
sity mi = 0.2, decay rate decay rate = 0.95, and the
SSDT was refined every 50 generations, number of elitists
3. The settings for GGGP were population size 2000, max-
imum depth 15, crossover rate 0.9, mutation rate 0.1, tour-
nament size 3. Thirty runs were generated for both PEEL
and GGGP. The errors (sum of absolute value of error) of
the best individual in each run are summarized in Table 1.

As can be seen from Table 1, when considering the mean,
median and the minimum statistics, PEEL gets much better
results than GGGP although both the standard deviation and
range of results of PEEL is larger than GGGP. We also con-
ducted a one-tailed student t-test to see whether PEEL sig-
nificantly outperformed GGGP. However, the significance
level is only at 0.2, i.e., in practice the results are not statis-
tically significant.

Comparing PEEL with the results of PIPE and GP
in [21], we find that PEEL is not worse than GP and PIPE in
terms of mean of fitness of the best individuals, even though
we use less tree depth and have no ephemeral constants in
PEEL. However, PEEL with a smaller range of results is
more stable than PIPE. Overall, in terms of the general ac-
curacy, on this specific problem, PEEL has roughly similar
performance to PIPE.

4.2 Time series predication

For this problem, we used the sunspot benchmark se-
ries for years 1700-1979 (The data can be obtained from
ftp://ftp.santafe.edu/pub/Time-Series/data/). It contains 280
data points, divided into three subsets: the data points
from years 1700-1920 are for training, while 1921-1955 and
1956-1970 are for testing.

The task of prediction is to map data points from lag
space to an estimate of the future value:

x̂t+1 = f(xt, xt−1, . . . , xt−δ)

where δ is the order of the model, which is set to 5 in this
work, and t is the time index.

The accuracy of the model is measure by Average Rela-
tive Variance (ARV) [22]. Given data set S, ARV is defined

as:

ARV (S) =

∑
t∈S (targett − predictiont)

2

∑
t∈S (targett −mean)2

=
1

σ2

1

T

∑

t∈S

(xt − x̂t)
2

where targett or xt are the actual values, predictiont

or x̂t are the predicted values, N is the total number of data
points, and σ is the variance of the total dataset (i.e. from
year 1700-1979), it is set to 0.041056, the same as in [11].

Fifteen PEEL runs were generated using the same set-
tings as in the function regression experiment, except that
the number of programs generated was set to 600000 to
make it comparable with the GP in [11]. The results are
summarized in Table 2. The first row is the statistics of 15
PEEL runs. The second row is the best individual among
all PEEL runs, in terms of ARV on the training data set,
this best individual, in postfix notation, can be found in Fig-
ure 4. The third row is the GP result from [11]. The fourth
row is the best GP result. The fifth row shows the results of
back-propagation neural networks from [22]. The last row
shows whether the differences between PEEL and GP are
significant according to a student t-test (at significance level
0.05). The right-most column, size, is the number of nodes
in the best individuals.

According to Table 2, PEEL, compared to GP, does not
fit the training data set closely; however PEEL generalizes
better. Note that the GP in [11] was carefully designed to
alleviate overfitting, while neither such measures nor ex-
plicit parsimony pressure were used in PEEL. Given that,
where does the parsimony pressure in PEEL come from?
It seems that PEEL has a built-in Occam’s Razor because
of its probabilistic nature. This means that larger structures
have less chance of preservation than smaller ones. This ex-
plains why the PEEL results tend to be much more compact
than those from GP. As can be seen from Table 2, the av-
erage size of the best PEEL individuals is only around 21.9
nodes while GP’s is as big as 66.5. These results are con-
sistent with the general belief and theoretical understand-
ing that compact solutions usually have better generaliza-
tion performance. This is very clear from Table 2, which
shows that while PEEL is worse on the training data than
GP, it has similar performance on the testing data 1921-
1955 and significantly outperforms GP on the testing data
1956-1979. Actually the best individual found by PEEL
generalizes much better on the data set 1956-1979 than any
other method cited in [11]. Much research has been done on
parsimony pressure and control of individual complexity in
GP [18, 9, 24]. It is notable that, in our work, although no
complicated parsimony mechanism is used, the results still
maintained impressively low complexity. Furthermore we
did not observe any obvious manifestations of pre-mature
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Figure 4: Best program found by PEEL on sunspot predic-
tion

convergence, a perennial problem in GP with parsimony
mechanisms. Although more accurate models of predict-
ing sunspots have been obtained by GP [15], that method
is highly specialized for non-linear function fitting, which
lessens its usefulness for comparative purposes.

5 Conclusion and Future Work

Essentially, PEEL is a probabilistic approach which mod-
els the dependency among nodes. The SSDT represents a
kind of restricted form of dependency tree. However, un-
like Balujua’s dependency tree [5] where the structure and
probabilities are both learned from good individuals, the
huge size of maximum individuals (in terms of number of
nodes) simply prohibits the construction of a Balujua-style
dependency tree. To permit this kind of learning, the SSDT
fixes the structure and learns only the dependencies within
this structure, i.e. given a specific location and parent node
(i.e. the left hand side of rule), the probability of choos-
ing a specific right hand side is specified. Although the
SSDT models the most fundamental dependencies in the
grammar constrained search space, it may not be sufficient
for some problems. A more flexible dependency structure
might model the dependency more fully, and therefore lead
to better performance. This is one of our major future re-
search issues. The SSDT also differs from pair-wise depen-
dency models [5, 21] in that the dependency modeled can be
higher order, because of the context/location information.
In the SSDT, the probability of choosing a specific symbol
depends not only on its immediate parent node, but also on
its location or context. The expansion of the SSDT through
grammar refinement also makes PEEL very different from
PIPE.

In conclusion, Program Evolution with Explicit Learn-
ing (PEEL) is a novel approach for automatic program syn-
thesis. The Search Space Description Table (SSDT) is em-
ployed to explicitly characterize fitter individuals and to
thus guide the search process. Grammar refinement helps
to make the SSDT more expressive, so that the search can
be focused on a small promising search area. On the prob-
lems we have tested, PEEL shows at least comparable per-
formance with GGGP and PIPE. However more analysis
and experiments are required before we can draw general
conclusions about the performance of PEEL.

In addition to the previously mentioned research issues,
future work and research issues include the following:
• In this research, relative coordinates are used to en-

Algorithm Training Generalization Generalization size
1700-1920 1921-1955 1956-1979

PEEL 0.137±0.016 0.185±0.039 0.291±0.071 21.9±4.3
PEEL(best) 0.115 0.150 0.184 22
GP 0.125±0.006 0.182±0.037 0.37±0.06 66.5
GP(best) 0.118 0.127 0.329 60
BP-NN 0.082 0.086 0.35
Significant Yes No Yes

Table 2: Comparison of PEEL and other methods on
sunspot prediction

code location information for grammar refinement.
Direct context information could also be used for this
purpose.

• In this paper, the grammar is refined at fixed time
steps. Clearly, this would be better done adaptively,
and more research is needed into appropriate heuris-
tics for the timing of grammar refinement.

• The learning method in this work is a variant of ACO.
However there is no intrinsic difficulty in replacing it
with other learning methods, such as ANN, Bayesian
networks or rule induction.

• Identifying building blocks and incrementally incor-
porating them into the grammar may improve the
scalability and convergence rate of PEEL.

• Since the knowledge about the search space is di-
rectly encoded in the SSDT, it would be interesting
to extract that knowledge from the SSDT directly, for
example, inducing production rules which may de-
scribe promising search area.

• The structured SSDT might make theoretical analy-
sis, such as convergence, possible.

• The development of a hybrid approach, combining
GGGP and PEEL.
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