
Can Tree Adjunct Grammar Guided Genetic Programming be Good at Finding a
Needle In a Haystack? A Case Study

 N.X.Hoai1, R.I. McKay2, and D. Essam2
School of Computer Science,

University of New South Wales,
ADFA campus, Canberra, ACT 2600, Australia,

1 x.nguyen@student.adfa.edu.au
2rim,daryl@cs.adfa.edu.au

Abstract – In this paper we experiment TAG3P on the even parity
problems in order to investigate the robustness of tree-adjunct
grammar guided genetic programming [3] (TAG3P) on the
problems classified as “finding a needle in a haystack” [9]. We
compare the result with grammar guided genetic programming
[15] (GGGP) and genetic programming [7] (GP). The results
show that TAG3P does not work well on the problems due to the
nature of the search space and the structure of the solution.

Keywords: Genetic Programming, Grammar – Guided Genetic
Programming, Tree Adjunct Grammars, Even-Parity Problem.

I. Introduction

Tree adjunct grammar guided genetic programming [3]
(TAG3P) is a grammar guided genetic programming
system that uses tree adjunct grammars along with context
free grammars as means to set bias for the evolutionary
process. In [4], we showed that TAG3P outperforms
significantly GGGP and GP on the symbolic regression
problem whereby the target functions and the search space
are suitable for the promotion of building blocks. In this
paper, we experiment TAG3P on the even parity problem
of which the nature of search space is like a needle in a
haystack that makes it difficult to solve with any
progressive search techniques [9]. The result is then
compared to GGGP and GP on the same problem with
similar settings on parameters. The organization of the
remainder of the paper is as follow. In section 2, we give
some basic concepts of GP, GGGP, TAG3P, and the
concepts of building blocks. Section 3 describes the even
parity problem. Section 4 contains our experimental setups.
The results will be given and discussed in section 5. Section 6
concludes the paper and discusses future work.

II. Backgrounds

In this section, we briefly overview some basic
components and operations of the three different genetic
programming systems, namely, canonical genetic
programming [2] (GP), grammar guided genetic
programming [15] (GGGP), tree adjunct grammar guided
genetic programming [3] (TAG3P) and the concept of
building blocks.

I.1. Genetic Programming
Genetic programming (GP) can be classified as an

evolutionary algorithm, in which computer programs are

the evolutionary targets. An early definition, model,
techniques and problems of genetic programming can be
found in [7]. For a good survey of genetic programming,
[1] is recommended. A basic genetic programming system
consists of five basic components [7]: representation for
programs (called genome structure), a procedure to
initialize a population of programs, a fitness to evaluate the
performance of the program, genetic operators, and
parameters. In [7], the structure of programs is the
structured tree of S-expressions; fitness of a program is
evaluated by its performance; main genetic operators are
reproduction, crossover, and mutation. Reproduction
means some programs are copied to the next generation
based on their fitness, crossover can be carried out
between two tree-based programs by swapping two of their
sub-trees,1 and a tree-based program can be mutated by
replacing one of its sub-trees by a randomly generated tree.
Parameters are population size, maximum number of
generations and probabilities for genetic operators. The
evolutionary process is as follows. At the beginning, a
population of tree-based programs is randomly generated.
Then, the new population is created by applying genetic
operators to the individuals chosen from the existing
population based on their fitness. This process is repeated
until the desired criteria are satisfied or the number of
generations exceeds the maximum number of generation.
GP has been used successfully in generating computer
programs for solving a number of problems in a wide
range of areas [7].

II.2 Grammar Guided Genetic Programming
Grammar guided genetic programming systems are

genetic programming systems that use grammars to set
syntactical constraints on programs. The use of grammars
also helps these genetic programming systems to
overcome the closure requirement in canonical genetic
programming, which cannot always be fulfilled [7].

 Using grammars to set syntactical constraints was first
introduced by Whigham [15] where context-free grammars
were used. We shall refer Whigham’s system as GGGP for
the rest of the paper. Basically, GGGP has the same
components and operations as in GP; however, there are a
number of significant differences between the two
systems. In GGGP, a program is represented as its
derivation tree in the context free grammar. Crossover

1 The ideas of using tree-based representation of chromosomes and
swapping sub-trees as crossover operator was first introduced in [2].

rim
Text Box
This is a self-archived copy of the accepted paper, self-archived un- der IEEE policy. The authoritative, published version can be found at http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1178980&tag=1

between two programs can only be carried out by
swapping their two sub-derivation trees that start with the
inner nodes labelled by the same non-terminal symbol in
the grammar. In mutation, a sub-derivation tree is replaced
by a randomly generated sub-derivation tree that is derived
from the same non-terminal symbol. GGGP demonstrated
positive results on the 6-multiplexer problem and
subsequently on a wide range of other problems.

II. 3 Tree Adjunct Grammar Guided Genetic Programming
Tree adjunct grammar guided genetic programming [3]

(TAG3P) uses tree adjunct grammars along with context
free grammars to set syntactical constraints as well as
search bias for the evolution of programs. In this
subsection we will first give the basic concepts of tree
adjunct grammars then the basic components of TAG3P.

II.3.1 Tree Adjunct Grammars

Tree-adjunct grammars are tree-rewriting systems,
defined in [5] as follows:

Definition 1: a tree-adjunct grammar comprises of 5-
tuple (T, V, I, A, S), where T is a finite set of terminal
symbols; V is a finite set of non-terminal symbols (T ∩ V
= ∅); S ∈ V is a distinguished symbol called the start
symbol. I is a set of trees called initial trees. An initial tree
is defined as follows: the root node is S; all interior nodes
are labelled by non-terminal symbols; each node on the
frontier is labelled by a terminal symbol. A is a finite set of
trees called auxiliary trees, which can be defined as
follows: internal nodes are labelled by non-terminal
symbols; a node on the frontier is labelled by a terminal or
non-terminal symbol; there is a special non-terminal node
on the frontier called the foot node. The foot node must be
labelled by the same (non-terminal) symbol as the root
node of the tree. We will follow the convention in [6] to
mark the foot node with an asterisk (*).

The trees in E= I ∪ A are called elementary trees. Initial
trees and auxiliary trees are denoted α and β respectively;
and a node labelled by a non-terminal (resp. terminal)
symbol is sometime called a non-terminal (resp. terminal)
node. An elementary tree is called X-type if its root is
labelled by the non-terminal symbol X.

The key operation used with tree-adjunct grammars is
the adjunction of trees. Adjunction can build a new
(derived) tree γ from an auxiliary tree β and a tree α
(initial, auxiliary or derived). If a tree α has a non-terminal
node labelled A, and β is an A-type tree then the
adjunction of β into α to produce γ is as follows. Firstly,
the sub-tree α1 rooted at A is temporarily disconnected
from α. Next, β is attached to α to replace this sub-tree.
Finally, α1 is attached back to the foot node of β. γ is the
final derived tree achieved from this process. Adjunction is
illustrated in Figure 1.

The tree set of a TAG can be defined as follows [5]:
 TG = {all tree t / t is completed and t is derived from

some initial trees}
A tree t is completed, if t is an initial tree or all of the

leaf nodes of t are non-terminal nodes; and a tree t is said

to be derived from a TAG G if and only if t results from an
adjunction sequence (the derivation sequence) of the form:
α β1(a1) β2(a2)... βn(an) , where n is an arbitrary integer, α ,
βi (i=1,2..n) are initial and auxiliary trees of G and ai
(i=1,2..n) are node address where adjunctions take place.
An adjunction sequence may be denoted as (*). The
language LG generated by a TAG is then defined as the set
of yields of all trees in TG.

 LG = {w ∈ T* / w is the yield of some tree t ∈ TG}
The set of languages generated by TAGs (called TAL)

is a superset of context-free languages; and is properly
included in indexed languages [6]. More properties of
TAL can be found in [6]. One special class of tree-adjunct
grammars (TAGs) is lexicalized tree-adjunct grammars
(LTAG) where each elementary tree of a LTAG must have
at least one terminal node. It has been proved that for any
context-free grammar G, there exists a LTAG Glex that
generates the same language and tree set with G (Glex is
then said to strongly lexicalize G) [6].

 A

 A A

 A *

 A

Fig.1 Adjunction.

II.3.2 Tree Adjunct Grammar Guided Genetic
Programming

In [3], we proposed a grammar guided genetic
programming system called TAG3P, which uses a pairs
consisting of a context-free grammar G and its
corresponding LTAG Glex to guide the evolutionary
process. The main idea of TAG3P is to evolve the
derivation sequence in Glex (genotype) rather than evolve
the derivation tree in G as in [15]. Therefore, it creates a
genotype-to-phenotype map. As in GP [7], TAG3P
comprises of the following five main components:

Program representation: a modified version of the
linear derivation sequence (*), but the adjoining address of
the tree βi is in the tree βi-1. Thus, the genome structure in
TAG3P is linear and length-variant. Although the language
and the tree set generated by LTAGs with the modified
derivation sequence is yet to be determined, we have found
pairs of G and Glex conforming to that derivation form for
a number of standard problems in genetic programming
[4].

Initialization procedure: a procedure for initializing a
population is given in [3]. To initialize an individual,
TAG3P starts with selecting a length at random; next, it
picks up randomly an α tree of Glex then a random

sequence of β trees and adjoining addresses. It has been
proved that this procedure can always generate legal
genomes of arbitrary and finite lengths [3].

Fitness Evaluation: the same as in canonical genetic
programming [3].

Genetic operators: in [3], we proposed two types of
crossover operators, namely one-point and two-point
crossover, and three mutation operators, which are
replacement, insertion and deletion. The crossover
operators in TAG3P are similar to those in genetic
algorithms; however, the crossover point(s) is chosen
carefully so that only legal genomes are produced. In
replacement, a gene is picked up at random and the
adjoining address of that gene is replaced by another
adjoining address (adjoining address replacement); or, the
gene itself is replaced by a compatible gene (gene
replacement) so that the resultant genome is still valid. In
insertion and deletion, a gene is inserted into or deleted
from the genome respectively. With these carefully
designed operators, TAG3P is guaranteed to produce only
legal genomes. Selection in TAG3P is similar to canonical
genetic programming and other grammar-guided genetic
programming systems. Currently, reproduction is not
employed by TAG3P.

Parameters: minimum length of genomes,
MIN_LENGTH, maximum length of genomes
MAX_LENGTH, size of population - POP_SIZE,
maximum number of generations – MAX_GEN and
probabilities for genetic operators.

 Some analysis of the advantages of TAG3P can be
found in [3, 4].

II.4 Other Grammar Guided Genetic Programming Systems
Wong and Leung [16] used logic grammars to combine

inductive logic programming and genetic programming.
They have succeeded in incorporating domain knowledge
into logic grammars to guide the evolutionary process of
logic programs.

Ryan and his co-workers [14] proposed a system called
grammatical evolution (GE), which can evolve programs
in any language, provided that this language can be
described by a context-free grammar. Their system differs
from Whigham’s system in that it does not evolve
derivation trees directly. Instead, genomes in GE are
binary strings representing eight-bit numbers; each number
is used to make the choice of the production rule for the
non-terminal symbol being processed. GE has been shown
to outperform canonical GP on a number of problems [14].

II.4 Building Blocks in Genetic Programming Systems
GP building blocks are low order and compact schemas

that is above the average observed performance and expected
of appearing at an exponential rates in future generation [11].
In [11] the GP hypothesis building blocks was stated as the
combination of the low order, compact, and highly fit
schemata to make even better schemata. To date there has
been several ways of defining building blocks (or schemata)
in genetic programming systems [12]. In [4], we propose the

concept of building blocks for TAG3P as trunks of beta trees
in the chromosome. TAG3P has been proved to work very
efficiently in combining and replicating building blocks [4].

III. Even Parity Problems

The even parity problem is the symbolic regression
problem on boolean domain where the target function is
the even-n-parity function. The even-n-parity function is
the boolean function of n binary variables; it returns true
when the number of 1-input bits is even and return false
otherwise.

In the literature, this function is believed to be the
hardest boolean function to learn because the solutions are
very sparse in the search space and they become
exponentially sparser when n is increased [7, 9].

The grammar G and the tree adjunct grammar Glex for
the problem is as follow:

G=(T, V, P, {EXP}) where T={X1, X2,.., Xn, AND, OR,
NAND, NOR}, V={EXP, OP, VAR}, and P={EXP→EXP
OP EXP, OP→AND, OP→OR, OP→NAND, OP→NOR,
EXP→VAR, VAR→X1, VAR→X2,..., VAR→Xn}.

Glex= (T,V, I, A, {EXP}) where T and V are the same as
in G; I and A are shown in Figure 2.

αi E X P βA N D 1 i E X P βO R 1 i E X P βN A N D 1 i E X P βN O R 1i E X P

 V A R E X P O P E X P * E X P O P E X P * E X P O P E X P * E X P O P E X P *

 X i V A R A N D V A R O R V A R N A N D V A R N O R

 X i X i X i X i
 βA N D 2i E X P βO R 2 i E X P βN A N D 2 i E X P βN O R 2 i E X P

 E X P * O P E X P E X P * O P E X P E X P * O P E X P E X P * O P E X P

 + V A R - V A R * V A R / V A R

 X i X i X i X i

 Fig. 2 Elementary trees for Glex with i=1,..,n.

IV. Experimental Design

We experiment TAG3P and GGGP on the even parity
problems with the number of input variables are 3, 4, and
5. The results for GP on these problems are taken from [7].
Table 1 summarises our experiment setups. We tried to set
the parameters as same as in [7] to provide a fair basis for
comparison.

V. Results and Discussions

For each problem, we conducted 100 runs (50 for
TAG3P and 50 for GGGP). For GP, we used the
results in [7]. The overall results are summarised in
table 2. Although the probability of success for GP
on even-5-parity problem was not given in [7], in [8]
Koza stated that, on average, GP needs up to

6,528,000 processed individuals to yield a solution
with a probability of 99%. We experiment GP on the
even-5-parity problem and the number of solutions
found were zero. The cumulative frequencies of GGP
and TAG3P on the even-3and 4-parity problems are
depicted in Figure 3 and 4.

Objective Induce the even-n-parity
function from its data.

Terminal Operands X1, X2,..., Xn
Terminal Operators AND, OR, NAND, NOR
Fitness Cases 2n cases of the function.
Raw fitness The number of correct

classification
Standardized
Fitness

The number of misclassification.

Hits Same as raw fitness
Genetic Operators Tournament selection, crossover,

and mutation.
Parameters Population size= 4000, crossover

rate=0.9, mutation rate=0.1,
tournament size=3, number of
generations=50.

Success predicate An individual scores 2n hits

Table1. The experiment setup.

 Even-3 Even-4 Even-5
TAG3P 26 (52 %) 0 (0%) 0 (0%)
GGGP 45 (90 %) 16 (38%) 0 (0%)
GP 50 (100 %) 24 (48 %) 0 (0%)

Table2. The probability of success for three systems on even-3, 4,
and 5-parity problems.

The results show that TAG3P is not comparable to
GGGP and GP on the problems. Even for the unsuccessful
runs, the average standardized fitness of the best
individuals in GGGP is smaller than in TAG3P.

One of the possible explanations for the poor
performance of TAG3P on the problems is that the nature
of the search space is not suitable for the promotion of
building blocks in TAG3P. In [9], the search space of the
problem was analysed; the solutions are very sparse. It is
like a needle in a haystack and not suitable for progressive
search techniques. The more a system near to random
search the better it can cope with the problems.

Moreover, in [16], it is known that the solutions in an
even-n-parity problem have a recursive structure. For
example, if EXP is the solution of an even-n-parity
problem then AND (OR (Xn+1, EXP), NAND (Xn+1, EXP))
is the solution for the even-n+1-parity problem. Therefore,
the number of operators (and the length) of the solution in
even-n+1-parity problem should be more than twice of that
in the even-n-parity problem2. In addition, the standardised
fitness of EXP in the even-n+1-parity problem is only 2n/2,
which is highly unfit.

2 In our experiments and [7], the length of the solutions was always very
long, e.g. it was more than or equal to 20 operators for even-3-parity
problem.

Consequently, a genetic programming system needs to
preserve and combine the long and unfit blocks of code in
order to induce the even-n-parity function. In that sense it
is contrary to the building blocks hypothesis.

In TAG3P the blocks of codes are the trunks of beta
trees adjoined together. Since they are unfit, they will die
out quickly in the course of evolution. Even when some
survive and combine to make a longer trunk of beta trees
the probability of being destroyed by crossover and
mutation later will be bigger. In contrast, GP and GGGP
seem to be better than TAG3P in preserving these unfit
blocks of codes because they define the blocks of codes as
sub-trees.

Aware of that problems, some approaches to packing
and reuse the code have been proposed such as automatic
define functions (ADF) [7, 8], auto defining module [13]
to name but a few. It is interesting to see TAG3P with
similar approach in the future.

Fig. 3 Cumulative frequencies of TAG3P and GGGP on the

even-3-parity problem.

Fig. 4 Cumulative Frequencies of TAG3P and GGGP on the
even-4-parity problem.

VI. Conclusion and Future Work

In this paper, we experiment TAG3P on the even parity
problems and compare with GGGP and GP. The result
show that TAG3P does not work well on the problems due
to the nature of the search space and the structure of the
solution, which requires the preservation and combination
of unfit blocks of codes.

In future, we will investigate further the effects of
genetic operators in TAG3P on the problem. As mentioned
in the previous section, a mechanism of automatic finding,
packing and reusing the blocks of codes for TAG3P will
be studied.

References

[1] W. Banzhaf, P. Nordin, R.E. Keller, and F.D. Francone,
Genetic Programming: An Introduction, Morgan Kaufmann
Pub, 1998.

[2] N. L. Cramer, “A representation for the Adaptive Generation
of Simple Sequential Programs’, Proceedings of an
International Conference on Genetic Algorithms and the
Applications, pp. 183 – 187, Lawrence Erlbaum Associates,
July 1985.

 [3] N.X. Hoai and R.I. McKay, “A Framework for Tree Adjunct
Grammar Guided Genetic Programming”, Proceedings of
the Post-graduate ADFA Conference on Computer Science
(PACCS’01), pp. 93-99, 2001.

[4] N.X. Hoai, R.I. McKay, D. Essam, and R. Chau, “Solving
Symbolic Regression Problem with Tree-Adjunct Grammar
Guided Genetic Programming: The Comparative Results”, to
Appear in the Proceedings of IEEE Congress on
Evolutionary Computation (CEC2002), Hawai, USA, 2002.

[5] A.K. Joshi, L.S. Levy, and M. Takahashi, “Tree Adjunct
Grammars”, Journal of Computer and System Sciences, Vol.
10:1, pp. 136-163, 1975.

[6] A.K. Joshi and Y. Schabes, “Tree Adjoining Grammars”,
Handbook of Formal Languages, Springer-Verlag, pp. 69-
123, 1997.

[7] J. Koza, Genetic Programming, The MIT Press, 1992.
[8] J. Koza, Genetic Programming II: Automatic Discovery of

Reusable Programs., The MIT Press, 1994.
[9] B. Langdon, “Why “Building Blocks” Don’t Work on Parity

Problems”, Tecnical Report CSRP-98-17, The University of
Birmingham, 1998.

[10] M. O’Neill and C. Ryan, “Grammatical Evolution: A Steady
State Approach”, Proceedings of the Second International
Workshop on Frontiers in Evolutionary Algorithms, pp. 419-
423, 1998.

[11] U. M. O’Reilly and F. Oppacher, The Troubling Aspects of
a Building Block Hypothesis for Genetic Programming,
Foundation of Genetic Algorithms 3, Morgan Kaufmann,
1995, pp. 73-88,.

[12] R. Poli and N.F. McPhee, “Exact Schema Theory for GP and
Variable Length Gas with Homologous Crossover”,
GECCO, San Fransisco, pp. 104-111, 2001.

[13] J.P. Rosca, and D.H. Ballard, “Genetic Programming with
Adaptive Representations”, Technical Report 489, The
University of Rochester, Feb 1994.

[14] C. Ryan, J.J. Collin, M. O’Neill, “Grammatical Evolution:
Evolving Programs for an Arbitrary Language”, Lecture
Note in Computer Science 1391, Proceedings of the First

European Workshop on Genetic Programming, Springer-
Verlag, pp. 83-95, 1998.

[15] P. Whigham, “Grammatically-based Genetic Programming”,
Proceedings of the Workshop on Genetic Programming:
From Theory to Real-World Applications, Morgan
Kaufmann Pub pp. 33-41, 1995.

[16] M.L. Wong and K.S. Leung, “Evolving Recursive Functions
for Even-Parity Problem Using Genetic Programming”,
Advances in Genetic Programming, The MIT Press, pp.
221-240, 1996.

