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Abstract— Compression algorithms generate a predictive
model of data, using the model to reduce the number of bits
required to transmit the data (in effect, transmitting only the
differences from the model). As a consequence, the degree
of compression achieved provides an estimate of the level of
regularity in the data. Previous work has investigated the use
of these estimates to understand the replication of building
blocks within Genetic Programming (GP) individuals, and
hence to understand how different GP algorithms promote
the evolution of repeated common structure within individuals.
Here, we extend this work to the population level, and use it
to understand the extent of similarity between sub-structures
within individuals in GP populations.

I. I NTRODUCTION

Pattern repetition in Genetic Programming (GP) popu-
lations has recently become a hot topic. While the initial
emphasis was on the easier-to-analyse linear GP [11], [14],
the focus has subsequently shifted to tree-based GP [10].
These studies cast considerable light on the evolution of GP
populations, and the spread of structures within populations.

Parallel to this development, we are studying the evolution
of repeated patterns within GP individuals, in problems
where repetition of components of solution structure is
desirable [13]. We found tree compression a useful tool,
providing an understanding of the extent of repetition within
genotypes, and allowing comparison between the spread
of code repetition under different GP algorithms, both in
effective and in non-effective code.

However tree compression can not only tell us about
repetition of code within individuals, but, applied to whole
populations, also about the spread of code between indi-
viduals. We view this as complementary to [10], providing
information about different aspects of code repetition. While
the latter tells us a great deal about exactly- matched subtrees,
the former gives us information about the overall extent
of matching, including inexact matching, being based on a
probabilistic compression algorithm.

In this study, we are interested in regularity and repetition
not only in the genotype as a whole, but also in the effective
part: that is, whether the changes in regularity in the effective
code mirror those in the whole genotype, or whether they
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behave in different ways. Hence this paper also emphasises
use of expression simplification to yield, as far as possible,
the effective skeleton of code.

We study this behaviour through two scenarios – com-
parisons of different GP algorithms – in which we might
discern differences in the emergence, propagation and preser-
vation of building blocks. To simplify presentation, both use
the same GP problem, a symbolic regression problem in
which the target solution is highly regular. We emphasise
that the primary aim of this paper is to demonstrate the
analyses that compression techniques support, not to make
particular claims about these algorithms. We do not intend to
claim general applicability of these results, but only of the
techniques. Compression analyses of these GP systems on
other problems might show completely different behaviour,
invalidating general conclusions drawn from these results.
However it would only serve toconfirm the value of the
compression analyses.

The rest of the paper is structured as follows: the remainder
of this section gives a brief background to compression and
simplification. Section II explains the approach, and intro-
duces our compression-based metrics and the evolutionary
scenarios we use for the investigation. Section III presents
the results of these experiments, and in Section IV we
examine the meaning of these results, and discuss the insight
they give into the behaviour of these evolutionary systems.
Finally, Section V presents our overall conclusions, discusses
the assumptions and limitations of the work, and suggests
directions in which the work may be extended.

A. Compression

In data compression, the aim is to encode the information
from a file in fewer bits than the original format. Here, we
focus on lossless compression. Most compression algorithms
use a two-stage approach, in which the data is first mod-
elled, and then encoded using the model. The compression
algorithm considered in this paper uses a statistical model. It
relies on the ability to detect and model statistical regularities
in the data. Of course if the data does not contain such
regularities, compression will fail: the new file will be larger
than the original file. An underlying assumption is that
regularities in our GP populations will fit the model of
the particular state-of-the-art compression algorithm weuse,
sufficiently well that the degree of compression will reflect
the degree of regularity in the data.

1) String vs Tree Compression:The compression litera-
ture has historically focussed primarily on string compression



algorithms, such as the well-known Ziv-Lempel [16]. How-
ever such algorithms are ill-suited to compress population
data from tree-based GP. Although tree data can be linearly
represented, e.g. by an inorder traversal of the tree, this
introduces spatial biases into the representation (left children
are close to their parents, but other children are not). So
they also introduce bias into the compression: regularities
involving left children will likely be discovered, but other
regularities will not, so string compression algorithms are ill-
suited to our purpose. Instead, we use an XML compression
system, XMLPPM [1].

XMLPPM is based on the well-known Predict by Partial
Match (PPM [2]) algorithm, which like most statistical
compression methods provides higher compression ratios
than dictionary-based methods, at higher computational cost.
PPM uses a Markov model to condition the probability that
a particular symbol will occur, on the sequence of charac-
ters which immediately precede the symbol. The length of
context used to predict the next symbol is determined by the
order of the Markov model (see [13] for details).

XMLPPM extends this model to trees using a stack to
record the context at each branch. When compression of
a branch is completed, the stack is popped to recover the
context at the last remaining branch point; thus the same
context is used to predict all children of a given node,
removing any bias in the compression model. Although
XMLPPM compresses trees represented as XML documents,
this is a minor technical detail; conversion of a tree to XML
representation is a straightforward matter, and does not affect
the degree of compression achieved.

B. Expression Simplification

In expression simplification, we aim to apply transforma-
tions to an expression, to obtain a simpler expression with the
same semantics. This is important in GP, in order to obtain
the effective core of the code which is being evolved.

Most research [9], [7], [4], [15] uses syntactic methods
to simplify trees. We can simplify an arithmetic expression
tree by applying arithmetic. For example, in an arithmetic
expression tree, for any termT, T ∗0 or 0∗T simplifies to
0. Of course, there is a wide range of mathematical identities
which may be used. However, rule-based simplification can-
not find all available semantic redundancies. We proposed an
alternative, semantically based method, Equivalent Decision
Simplification (EDS) [12], and presented evidence that, at
least for this domain, EDS found far more simplifications
than did rule-based simplification, and closely approximated
a complete search of the available simplifications.

II. M ETHODS

We combine the two methods, EDS and PPM-based com-
pression of populations of trees, to obtain further insights
into the behaviour of a number of different algorithms. In
fact, we base the study on two previous sets of experiments,
which compared a number of algorithms. Both sets of
experiments compared GP systems originally designed to
promote replication of building blocks within individuals.
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Fig. 1. Compression of Random and Linear Trees vs Tree Size (left: Small
Trees; Right: Large Trees)

With the exception of the Koza-style GP, all algorithms
were based on the TAG representation detailed in [5]. We
summarise some key properties:

1) TAG representation is based on labelled trees, as in
Koza-style GP. using subtree crossover and mutation

2) Any rooted subtree of a TAG tree, or any consistent
extension, is valid: deleting any subtree of a TAG tree
yields a TAG tree, and a TAG tree may be extended
by adding any valid subtree at the leaves

3) While TAG-based algorithms evolve a TAG represen-
tation, this representation is converted to a standard
Koza-style expression tree prior to evaluation

Because of the validity properties, it is possible to use TAGin
many ways. In this paper, we consider two such applications:

• Adding code-duplicating local search to TAG3P
• A TAG-based developmental evaluation system

A. Compression Issues

While statistical compression algorithms compress large,
structured objects well, they have overheads which lead to
difficulty in compressing small or very randomly structured
objects. Thus the absolute compression ratio can be mislead-
ing. For very unstructured objects, it may be greater than
one, while for small objects, we may get poor compression
even if the object is highly structured. This means that it is
difficult, using raw compression ratios, to know the overall
scale of the compression space, or to compare compression
ratios between objects of very different sizes.

To overcome this, we take a further step. With PPM, ran-
dom structures will compress worse than any other structures.
On the other hand, linear trees, with only a single internal
symbol, will compress near-optimally. We use these extremes
as normalisation bounds on the compression ratios. In detail,
we generated a large number of near-random trees (using the
’grow’ part of the initialisation process for GP populations)1.
We also generated linear trees of all possible sizes within
the range of interest. We compressed these individuals with

1In [13], we used both full and grow trees. With the former, XMLPPM
can use a reduced character set for arithmetic coding of internal nodes, and
hence get better compression: full trees are significantly non-random. We
erred in our view ”Note...the step in compression of random trees...probably
an artefact of the fixed-size context used by PPM algorithms.”. This, plus our
use of elitism, altered the three figures from [13] slightly, but the conclusions
of that paper are unaffected.



TABLE I

COMPRESSION ANDSIMPLIFICATION PARAMETER SETTINGS

PPM Context Depth 16
Method EDS
Simplification Relative Error 10−4

Subtree search order Breadth-first from leaves
Candidates for substitution (0),(1),(x)

TABLE II

GRAMMAR DESCRIBING SOLUTION SPACE

G = V,T,P,S EXP→ EXP OPEXP
S= EXP |sin EXP|VAR
V = EXP,OP,VAR OP→ +|− | ∗ |/
T = x,sin,+,−,∗,/ VAR→ x

XMLPPM. The results are plotted in figure 12.
We interpolated this graph to obtain lookup tables for the

normalisation range. In detail, if a sizeS tree compresses
to size C, we find in the normalisation table the extreme
compression valuesL and R for trees of this size, and
compute the ratio(R−C)/(R− L). This metric has some
desirable properties:

• For trees of a given size, it is monotonic with compres-
sion (and thus estimates the degree of regularity)

• It normalises the regularity between 0 and 1 (random
trees – with no regularity – will give a value of 0, while
linear trees – with close-to-maximal regularity from the
perspective of XMLPPM – will give a value of 1)

• It discounts any compression algorithm overheads

While the genotype representations considered here differ,
all are eventually converted to a standard expression tree for
evaluation. For comparability, all compression measurements
are performed on expression trees, not on the primary
genotypic representation. Compression and simplification
parameter settings are given in table I.

B. Problem Domain

The problem domain was a symbolic regression, in which
GP was tasked to find a function fitting 20 points generated
by a simple polynomial expression – in this case,Fn(x) =
x+ x2 + x3 + ... + xn, for various values ofn. We used the
grammar in table II to define the solution space. After EDS,
further symbols may appear:V is extended with a further
non-terminalCONST, and T with two further terminals,
0,1, while P is extended with two additional productions:
EXP→ CONSTandCONST→ 0|1. For our first analysis,
we drew on experiments from [5] using the duplication
operator, which selects a random node in the current tree,
copies the subtree rooted at that point, and re-inserts it at
another point in the tree. Since the duplication operator alone
results in uncontrolled bloat, we balanced it with a truncation
operator, which deletes a randomly-selected subtree. We
anticipated that duplication would be very effective in such
a highly structured problem domain. In fact, it performed

2Where more than one random tree of a given size was found, we used
the worst compression ratio).

TABLE III

COMMON EXPERIMENTAL PARAMETER SETTINGS

Elitism Elite of 1
Terminal Operands X (the independent variable)
Operators (Function set) +,−,∗,/,sin
Fitness Cases The sample of 20 points in the interval

[−1..+1]
Fitness sum of errors over 20 fitness cases
Runs per experiment 30

TABLE IV

DUPLICATION EXPERIMENT: PARAMETER SETTINGS

Objective Find a function fitting a given sample of 20
(xi ,yi) data points, for target functionF9

Hits The number of fitness cases for which the
error is less than 0.01

Variation Operators subtree crossover and subtree mutationfor
both GP and TAG3P

Common Parameters MAXGEN = 51,MAXSIZE = 40, Crossover
rate=0.9, mutation rate=0.1

Evolutionary runs POPSIZE = 500
Local search 10 SEARCHDEPTH = 10,POPSIZE = 50
Local search 50 SEARCHDEPTH = 50,POPSIZE = 10
Success predicate An individual scores 20 hits

relatively poorly as a mutation operator, but worked well
as a local hillclimbing search operator when combined with
crossover as an evolutionary operator. Further details of the
experiments are given in [5]. To summarise, we compared
five versions: TAG3P which uses subtree crossover and muta-
tion; TAGCROSS, which omits mutation entirely; TAG3PM,
which substitutes subtree mutation with balanced duplication
and truncation; and LSTAG3P10 and LSTAG3P50, which
omit mutation, but use respectively 10 and 50 steps of
local search with balanced duplication and truncation. These
experiments used the functionF9. Detailed parameter settings
are given in tables III and IV.

For the second analysis, we drew on experiments on
developmental evaluation [6], which has been proposed as
a mechanism to promote structural regularity in GP. In
analogy with biological systems, this mechanism evaluates
individuals throughout development to promote adaptibility,
and hence select for regular structure. For developmental
evaluation, it is essential to have a series of problems of
increasing difficulty; in this case, we used the function set
F1, ...F9. We simulate developmental evaluation by evaluating
the individuals, as they grow, on successively more difficult
problems from the problem family. In these experiments, five
treatments were used: standard Koza-style GP, the TAG3P
system as above; DEVTAG, which uses TAG3P’s evolu-
tionary algorithm, but replaces the evaluation of a single
objective with evaluation during ’development’ (which is
taken to mean, sub-sections of the TAG tree); DTAG3P, a
typical developmental system, evolving an L-system which
generates an individual through a series of stages, evaluated
during development as above; and DTAG3PF9ALL, which
uses the DTAG3P developmental process, but conducts all
evaluations on the final function,F9 (as do standard GP and
TAG3P). Detailed parameter settings are given in tables III



TABLE V

DEVELOPMENTAL EXPERIMENT: PARAMETER SETTINGS

Objective Find aF9 (GP, TAG3P) or F1,F2, . . .F9
(DEVTAG, DTAG3P) fitting a sample of
20 (xi ,yi) data points

Success Predicate Sum of errors< ε = 0.01
Variation Operators crossover between rules, sub-tree crossover

and sub-tree mutation on successors for
DTAG3P;
sub-tree crossover and sub-tree mutations
for GP, TAG3P and DEVTAG

Probabilities Crossover 0.9; mutation 0.1
TAG Min/Max initial size 2 to 1000
Max depth for GP 20
# of DTAG3P rules 8
Min/Max # of β-trees in
each successor (DTAG3P)

1 to 5

Population size 250
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Fig. 2. Duplication Experiment: Median Best Fitness vs Generation

and V.

III. R ESULTS

Figure 2 shows the fitness of the best individual in each
generation, averaged over 30 runs. Figure 31 shows the
structural regularity for the fittest individual in each run,
averaged over the 30 runs. Figures 4, 5 were constructed
by taking the best individual in a generation from each of
the 30 runs, and compressing the whole. Figures 6, 7 show
the results of compressing the whole population in each
generation (again, averaged over 30 trials). Table VI shows
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Fig. 3. Duplication Experiment: Individual Complexity vs Generation (left:
Unsimplified Trees; right: Simplified Trees)
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Fig. 4. Duplication Experiment: Between-Experiments Complexity: Un-
simplified Trees
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Fig. 5. Duplication Experiment: Between-Experiments Complexity: Sim-
plified Trees
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TABLE VI

DUPLICATION EXPERIMENT: END OF RUN COMPLEXITY VALUES3

INDIVIDUAL MEANS INDIVIDUAL COMPLEXITY ; POPULATION MEANS POPULATION COMPLEXITY; BETWEEN MEANS BEWEEN-RUN COMPLEXITY;

RAW MEANS UNSIMPLIFIED TREES; SIMP. MEANS SIMPLIFIED TREES

Complexity
Measure

SYSTEM TAGCROSS TAG3P TAG3PM LSTAG3P50 LSTAG3P10

Individual Raw 0.3647±0.1452 0.2220±0.1187 0.2383±0.1415 0.3949±0.1285 0.4416±0.1772
Simp. 0.5634±0.1674 0.4605±0.1545 0.4718±0.1689 0.4689±0.1821 0.5994±0.1717

Population Raw 0.6921±0.0335 0.6504±0.0219 0.6291±0.0227 0.5256±0.0668 0.4967±0.0370
Simp. 0.8090±0.0455 0.7710±0.0401 0.7424±0.0401 0.5691±0.0899 0.5997±0.0355

Between Raw 0.2157 0.1875 0.2038 0.2204 0.2822
Simp. 0.5134 0.4542 0.4535 0.3841 0.5383
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Fig. 7. Duplication Experiment: Population Complexity: Simplified Trees

the end-of-run values for these measurements3.
Figures 2 and 3 are provided primarily for reference, since

they are discussed in more detail in [13]. Points to note in the
latter include the high regularity generated by local search
with duplication/truncation, especially in the effectivecode;
the gradual increase in regularity when crossover is the only
operator, i.e. in the absence of any form of mutation, again
especially for effective code; and the reduced regularity in
effective code generated with a greater depth of local search.

Figures 4 and 5 may be seen as estimating the extent
of regularity between runs – the propensity of the partic-
ular system to construct its best solutions from the same
components in repeated runs. The most notable point is the
much higher regularity in effective code than in overall code,
and we note a trend toward increasingly regular effective
code in the crossover-only runs, shared more weakly by the
runs in which duplication/truncation functioned as mutation
operators.

In figures 6 and 7, the two local search treatments behave
very similarly in population regularity, as do the other three,

3Individual complexity is measured as the mean and standard deviation
(over all runs) of the compression complexity of the best individual in the
run; population complexity is measured as the mean (over all runs) of the
compression complexity of the whole population. Between-runs complexity
is measured as the compression complexity of the set formed from the best
individual of each of the runs, so no mean or standard deviation is calculated.
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Fig. 8. Developmental Experiment: Median Best Fitness vs Time4
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Fig. 9. Developmental Experiment: Individual Complexity vs Time4 (left:
Unsimplified Trees; right: Simplified Trees)

all eventually reaching much higher regularity, with the
crossover-only treatments generating slightly lower regularity
than the other two. The effective code exhibits substantially
more regularity than the ineffective code.

In the developmental evaluation experiments, the figures
follow the same structure as for the duplication experiments4.

Figure 8 shows the fitness of the best individual in
each generation, averaged over 30 runs. Figure 91 shows
the structural regularity for the fittest individual in each
run, averaged over the 30 runs. Figures 10 and 11 were
constructed by taking the best individual in a generation from

4In the developmental figures, theX axis shows the number of generations
times the number of developmental stages, so as to give a fair comparison
– in terms of function evaluations – between developmental andnon-
developmental systems.
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Fig. 11. Developmental Experiment: Between-Experiments Complexity vs
Time4: Simplified Trees
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Fig. 12. Developmental Experiment: Population Complexity vs Time4:
Unsimplified Trees
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Fig. 13. Developmental Experiment: Population Complexity vs Time4:
Simplified Trees

each of the 30 runs, and compressing the whole. Figures 12
and 13 show the results of compressing the whole population
in each generation (again, averaged over 30 trials). Table VII
shows the end-of-run values for these measurements.

Figure 9 reveals that developmental evaluation with an L-
system developmental process generates by far the highest
regularity. If developmental evaluation is omitted, an L-
system can initially generate high regularity, but it is rapidly
lost. Regularity is generally higher in the effective code
than in the ineffective. Standard GP exhibits substantially
lower regularity than any of the other systems, especially in
effective code.

Interestingly, figures 10, 11 show a large difference be-
tween the uniformity of building blocks found by different
runs with L-systems development, and with non-develop-
mental evolution. In the latter case, there is very little
evolution of regularity in the overall code, and not much
more in the case of standard GP in the effective code. That
is, different runs do not discover similar building blocks
to any great extent. For TAG-based runs, there is a little
more regularity in the effective code components, but it
is only modest. By contrast, the L-system developmental
systems discover very similar solution components in every
run, especially in the case of DTAG3P.

At the population level, figures 12, 13 show intriguing
effects. All three developmental systems show greater evolu-
tion of overall regularity (that is, spread of building blocks)
than does the non-developmental TAG system. Surprisingly,
this effect disappears in the effective code. All systems
exhibit a (high) degree of regularity. On the other hand,
standard GP shows higher regularity still, in both overall and
effective code, than do any of the other systems.

IV. D ISCUSSION

A. Duplication/Truncation Experiments

Compression between runs tells us about the propensity of
runs to discover solutions composed of similar components.
From these figures, we can see that effective code exhibits



TABLE VII

DEVELOPMENTAL EXPERIMENT: END OF RUN COMPLEXITY VALUES3

INDIVIDUAL MEANS INDIVIDUAL COMPLEXITY ; POPULATION MEANS POPULATION COMPLEXITY; BETWEEN MEANS BEWEEN-RUN COMPLEXITY;

RAW MEANS UNSIMPLIFIED TREES; SIMP. MEANS SIMPLIFIED TREES

Complexity
Measure

SYSTEM TAG3P GP DEVTAG DTAG3P DTAG3PF9ALL

Individual Raw 0.1672±0.1267 0.0967±0.1001 0.1707±0.0946 0.7125±0.2420 0.4143±0.2660
Simp. 0.2174±0.1144 0.1795±0.1027 0.3269±0.2226 0.6535±0.3083 0.5563±0.3436

Population Raw 0.6772±0.0457 0.9340±0.0545 0.7672±0.1044 0.8276±0.0164 0.8377±0.0433
Simp. 0.8156±0.0227 0.9650±0.0342 0.8454±0.0736 0.8468±0.0210 0.8492±0.0509

Between Raw 0.2417 0.0818 0.1942 0.8851 0.8841
Simp. 0.3461 0.1673 0.2796 0.8683 0.9038

far more regularity than ineffective code, yet the within-
individuals regularity is generally similar for overall and for
effective code. We thus reach the (not altogether surprising)
conclusion that, at least for this problem, selection pressure
has acted to ensure that the effective code finds similar
building blocks in each run, but that this effect is weaker,
if present at all, for the ineffective code.

It is difficult to determine whether the increase in regular-
ity seen in between-runs compression indicates the gradual
discovery of similar building blocks, or simply reflects thein-
crease of regularity within the individual solutions. However
the effect is most marked in those cases – crossover-only and
duplication/truncation-mutation-only – where an increase in
within-individual is most marked, suggesting that the latter
is quite likely.

It is worth noting that this inability to separate such effects
constitutes one of the main limitation of these compression
techniques. While regularity effects might be observed, it is
often difficult to determine precisely what is the source of
the regularity, since there is no sensible way to compress a
set of trees without also compressing the individual trees.

From the population compression results, we can draw
a number of interesting conclusions. First, it is clear that
the effective code has a much higher tendency to discover
common building blocks than does the ineffective code, pre-
sumably because of the higher selective pressure it is subject
to. Second, that the selection of such components continues
throughout the run, particularly for the effective code. Third,
that the effect is stronger in the case of crossover-only runs,
perhaps because mutation exerts a slight disruptive effecton
the spread of building blocks. Fourth, that there is a much
lower rate of increase of regularity in the local search runs;
this is partially explainable because the runs are calibrated
to use the same number of evaluations. Since local search
runs are evaluated in every step of local search, there are
correspondingly fewer opportunities for crossover to spread
code components between individuals. This would partially
explain the lower rate of increase of regularity, but the
explanation is incomplete, since it does not explain why the
two local search runs have such similar rates of increase
despite the fivefold disparity in their crossover rate.

B. Developmental Experiments

The results on individual regularity mostly fitted our
expectations, that developmental methods could generate
regularity, but that without developmental evaluation, they
could not select for it in effective code.

With between-runs regularity, the complete dichotomy
between developmental and non-developmental systems is
noteworthy. Developmental runs clearly generate the same
components over and over in different runs, but non-develop-
mental systems do not. This similarity is not simply the result
of internal self-similarity, since it occurs with DTAGF9ALL,
which shows no tendency toward evolving self-similarity.

The population results were quite surprising, especially
the very high level of regularity generated by standard GP.
That is, standard GP is much more effective at spreading
code components throughout the population than any of the
TAG-based approaches - even TAG3P, whose evolutionary
process is identical with that of standard GP. This is not
inconceivable, since even if TAG3P exhibits a similarly high
propensity to generate similar building blocks in its native
representation, it is possible that the 2-stage mapping which
generates the expression tree representation from the original
TAG representation may distort such regularity. But it is
surprising, since one might expect such distortion to also
result in the TAG-based systems performing poorly – the
reverse of our experience.

V. CONCLUSIONS

A. Implications of the Work

The main conclusion of this work is that compression-
based metrics can tell us a great deal about the behaviour
of GP systems, and in particular, about their tendency to
share components across a population, or to find similar
components in different runs. We were able, in section IV, to
draw surprisingly detailed conclusions about the behaviours
of the different algorithms, at least on the particular problem
studied here. In this page-limited paper, we chose to inves-
tigate the range of questions about building blocks and code
replication that could be handled by compression analyses,
rather than extending to different problems, since resultson
different problems would be of equal value whether they



were confirmatory of the results obtained here, contradictory
to them, or neutral. All would be interesting.

B. Assumptions and Limitations

The PPM tree compression model assumes that a node
is predicted well by its context of parent nodes. Thus the
degree of compression reflects the extent to which this model
applies to some data. That is, high levels of compression
imply that it is often the case that the same parent nodes are
often followed by the same child nodes. It is our contention
that this corresponds closely to the normal understanding of
GP building blocks.

Our work is also based on the assumption that linear
interpolation between the extremes of compressibility and
incompressibility is a reasonable way to estimate regularity;
and on the twin assumptions that linear and random trees
lie at those extremes. Everything we have observed so far is
consistent with these assumptions.

Of course, in undertaking this work, we are comparing
regularities of trees of vastly different sizes, especially in
the developmental experiments [8]. Does this introduce a bias
(independent of the previous issue)? This question introduces
deep issues of the meaning of complexity, far beyond the
scope of this paper; however we note that complexity defini-
tions based on information theory and compression form one
of the primary strands of research in defining complexity [3].

The primary limitation of this approach lies in our inability
to use it to answer some natural questions about the source
of regularity. For example, we can estimate the regularity
of GP populations, and the regularity within individuals.
However we have no way to directly measure the difference.
We can’t specify a metric for the degree of repetition between
individuals, since we can see no way to remove the effect of
the within-individual regularity.

In principle, the approach is applicable to any GP tree
representation since it can be converted to XML format.
However in the absence of a standardised GP tree represen-
tation, this mapping has to be generated for each particular
representation. For this analysis (and it must be said, for other
GP analyses also), it would be highly desirable to have a
standard XML representation for tree-based GP populations.

C. Future Extensions

In its present form, the compression analysis can only
estimate the extent to which GP components are repeated
across a population; it gives no indication of how those
components are conserved from generation to generation. In
principle, however, compression approaches could achieve
this. If we were to use the population from one generation,
generationt, to generate a compression model, but use that
model to compress a second generation, generationt +k, we
would in effect be estimating the extent to which common
components from the first population were repeated in the
second. That is, we would have a way to measure the
conservation of components from generation to generation.
We are currently working on this extension.
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