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Abstract— Compression algorithms generate a predictive behave in different ways. Hence this paper also emphasises

model of data, using the model to reduce the number of bits yse of expression simplification to yield, as far as possible
required to transmit the data (in effect, transmitting only the the effective skeleton of code.

differences from the model). As a consequence, the degree We studv this behavi h h .
of compression achieved provides an estimate of the level of e study this behaviour through two scenarios — com-

regularity in the data. Previous work has investigated the use Parisons of different GP algorithms — in which we might
of these estimates to understand the replication of building discern differences in the emergence, propagation anépres
blocks within Genetic Programming (GP) individuals, and vation of building blocks. To simplify presentation, botkeu
hence to understand how different GP algorithms promote the same GP problem, a symbolic regression problem in

the evolution of repeated common structure within individuals. . - L .
Here, we extend this work to the population level, and use it which the target solution is highly regular. We emphasise

to understand the extent of similarity between sub-structures that the primary aim of this paper is to demonstrate the

within individuals in GP populations. analyses that compression techniques support, not to make
particular claims about these algorithms. We do not intend t
. INTRODUCTION claim general applicability of these results, but only of th

Pattern repetition in Genetic Programming (GP) poputechniques. Compression analyses of these GP systems on
lations has recently become a hot topic. While the initiabther problems might show completely different behaviour,
emphasis was on the easier-to-analyse linear GP [11], [14fvalidating general conclusions drawn from these results
the focus has subsequently shifted to tree-based GP [16lowever it would only serve t@onfirm the value of the
These studies cast considerable light on the evolution of GPmpression analyses.
populations, and the spread of structures within popuiatio = The rest of the paper is structured as follows: the remainder

Parallel to this development, we are studying the evolutioaf this section gives a brief background to compression and
of repeated patterns within GP individuals, in problemsimplification. Section Il explains the approach, and intro
where repetition of components of solution structure isluces our compression-based metrics and the evolutionary
desirable [13]. We found tree compression a useful toogcenarios we use for the investigation. Section Il present
providing an understanding of the extent of repetition with the results of these experiments, and in Section IV we
genotypes, and allowing comparison between the spreasamine the meaning of these results, and discuss the insigh
of code repetition under different GP algorithms, both irthey give into the behaviour of these evolutionary systems.
effective and in non-effective code. Finally, Section V presents our overall conclusions, dises

However tree compression can not only tell us abouhe assumptions and limitations of the work, and suggests
repetition of code within individuals, but, applied to whol directions in which the work may be extended.
populations, also about the spread of code between indi- )
viduals. We view this as complementary to [10], providinf' Compression
information about different aspects of code repetition. M/hi  In data compression, the aim is to encode the information
the latter tells us a great deal about exactly- matchedeahtr from a file in fewer bits than the original format. Here, we
the former gives us information about the overall extenfocus on lossless compression. Most compression algaithm
of matching, including inexact matching, being based on ase a two-stage approach, in which the data is first mod-
probabilistic compression algorithm. elled, and then encoded using the model. The compression

In this study, we are interested in regularity and repetitioalgorithm considered in this paper uses a statistical mdidel
not only in the genotype as a whole, but also in the effectiveelies on the ability to detect and model statistical regtides
part: that is, whether the changes in regularity in the ¢éffec in the data. Of course if the data does not contain such
code mirror those in the whole genotype, or whether thefegularities, compression will fail: the new file will be ¢gar

than the original file. An underlying assumption is that
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algorithms, such as the well-known Ziv-Lempel [16]. HOw- 30— :
ever such algorithms are ill-suited to compress population, 2ojl- = = tnea e
data from tree-based GP. Although tree data can be linearly

represented, e.g. by an inorder traversal of the tree, thi¢
introduces spatial biases into the representation (leftirem
are close to their parents, but other children are not). Sc =
they also introduce bias into the compression: regularitie % % o O e e s 35000
involving left children will likely be discovered, but othe ozt oromalszetrs
regularities will not, so string compression algorithms @i~ Fig. 1. Compression of Random and Linear Trees vs Tree Sitegimall
suited to our purpose. Instead, we use an XML compressidffes: Right: Large Trees)

system, XMLPPM [1].

XMLPPM is based on the well-known Predict by Partial ) ) )
Match (PPM [2]) algorithm, which like most statistical With the exception of the Koza-style GP, all algorithms

compression methods provides higher compression rati§€re based on the TAG representation detailed in [5]. We
than dictionary-based methods, at higher computatiorgtl coSUmmarise some key properties:
PPM uses a Markov model to condition the probability that 1) TAG representation is based on labelled trees, as in
a particular symbol will occur, on the sequence of charac- Koza-style GP. using subtree crossover and mutation
ters which immediately precede the symbol. The length of 2) Any rooted subtree of a TAG tree, or any consistent
context used to predict the next symbol is determined by the  extension, is valid: deleting any subtree of a TAG tree
order of the Markov model (see [13] for details). yields a TAG tree, and a TAG tree may be extended
XMLPPM extends this model to trees using a stack to by adding any valid subtree at the leaves
record the context at each branch. When compression of3) While TAG-based algorithms evolve a TAG represen-
a branch is completed, the stack is popped to recover the tation, this representation is converted to a standard
context at the last remaining branch point; thus the same  Koza-style expression tree prior to evaluation

context is used to predict all children of a given nodegecause of the validity properties, it is possible to use TAG

removing any bias in the compression model. Althoughyany ways. In this paper, we consider two such applications:
XMLPPM compresses trees represented as XML documents,

this is a minor technical detail; conversion of a tree to XML
representation is a straightforward matter, and does fexttaf
the degree of compression achieved.

Random(growonly) tree
= = = Linear tree

100

Compressed size(bits)
-
«

Compres’

« Adding code-duplicating local search to TAG3P
« A TAG-based developmental evaluation system

A. Compression Issues

B. Expression Simplification : . : .
P P While statistical compression algorithms compress large,

_ In expression simplification, we aim to apply transformasryctured objects well, they have overheads which lead to
tions to an expression, to obtain a simpler expression Weh t gjfficulty in compressing small or very randomly structured
same semantics. This is important in GP, in order to obtaghjects. Thus the absolute compression ratio can be mislead
the effective core of the code which is being evolved. ing. For very unstructured objects, it may be greater than
Most research [9], [7], [4], [15] uses syntactic methodgne, while for small objects, we may get poor compression
to simplify trees. We can simplify an arithmetic expressionyyen if the object is highly structured. This means that it is
tree by applying arithmetic. For example, in an arithmetigjificylt, using raw compression ratios, to know the overall

expression tree, for any teri, T «0 or 0« T simplifies t0 gcale of the compression space, or to compare compression
0. Of course, there is a wide range of mathematical idestitigatios between objects of very different sizes.

which may be used. However, rule-based simplification can- 14 gvercome this. we take a further step. With PPM, ran-

not find all available semantic redundancies. We proposed g8 structures will compress worse than any other strusture
alternative, semantically based method, Equivalent D®TiS 5 the other hand, linear trees, with only a single internal
Slmpl|f|cat|qn (EDS_) [12], and presented evm!enc_e_ thif‘ta %tymbol,will compress near-optimally. We use these exteeme
least for this domain, EDS found far more simplifications,g normalisation bounds on the compression ratios. Inldetai
than did rule-based simplification, and closely approxédat \ e generated a large number of near-random trees (using the
a complete search of the available simplifications. 'grow’ part of the initialisation process for GP populatigh

II. METHODS We also generated linear trees of all possible sizes within

We combine the two methods, EDS and PPM-based cor%he range of interest. We compressed these individuals with

pression of populations of trees, to obtain further insght .

into the behaviour of a number of different algorithms. | In [13], we used both full and grow trees. With the former, XMR¥R
Into . g > Mcan use a reduced character set for arithmetic coding ofiaterodes, and
fact, we base the study on two previous sets of experimentgnce get better compression: full trees are significantly-random. We

which compared a number of algorithms. Both sets gfrred in our view "Note...the step in compression of randaedr..probably
n artefact of the fixed-size context used by PPM algorithriiéis, plus our

experiments _cor_npared GP systems or_igi_na_lly _d_eSigned Ege of elitism, altered the three figures from [13] slightly; the conclusions
promote replication of building blocks within individuals  of that paper are unaffected.



TABLE | TABLE Il

COMPRESSION ANDSIMPLIFICATION PARAMETER SETTINGS COMMON EXPERIMENTAL PARAMETER SETTINGS
PPM Context Depth 16 Elitism Elite of 1
Method EDS Terminal Operands X (the independent variable)
Simplification Relative Error 10 Operators (Function set)  +,—,x,/,sin
Subtree search order Breadth-first from leaves Fitness Cases The sample of 20 points in the interval
Candidates for substitution 0),(1),(x) (-1.+1]
Fitness sum of errors over 20 fithess cases
TABLE I Runs per experiment 30
GRAMMAR DESCRIBING SOLUTION SPACE
TABLE IV
G=V,T,PS EXP— EXPOPEXP DUPLICATION EXPERIMENT: PARAMETER SETTINGS
S=EXP |[sinEXRVAR
V =EXPRORVAR OP— +|— x|/ Objective Find a function fitting a given sample of 20
T =x,sin+,—,%,/ VAR— X (%,yi) data points, for target functiofy
Hits The number of fitness cases for which the
error is less than 0.01
N Variation Operators subtree crossover and subtree mutfiion
XMLPPM. The results are plotted in figuré.1 P both GP and TAG3P
We interpolated this graph to obtain lookup tables for the Common Parameters MAXgen = 51, MAXsize = 40, Crossover
normalisation range. In detail, if a siZ®tree compresses . rate=0.9, mutation rate=0.1
. find in th lisati table th t Evolutionary runs PORs;ze = 500
to sizeC, ‘we find in the normalisation table the extreme |qcaj search 10 SEARChbgprH = 10,PORy 7 = 50
compression values and R for trees of this size, and Local search 50 SEARCHepTH = 50, PORsjze = 10
compute the ratio(R— C)/(R— L). This metric has some Success predicate An individual scores 20 hits

desirable properties:
« For trees of a given size, it is monotonic with compres- )
sion (and thus estimates the degree of regularity) relatively poorly as a mutation operator, but worked well
« It normalises the regularity between 0 and 1 (randorfiS & local hillclimbing search operator when combined with
trees — with no regularity — will give a value of 0, while CroSsover as an evolutionary operator. Further detailhi®f t
linear trees — with close-to-maximal regularity from the®Xperiments are given in [5]. To summarise, we compared
perspective of XMLPPM — will give a value of 1) five versions: TAG3P which uses subtree crossover and muta-
« It discounts any compression algorithm overheads tion; TAGCROSS, which omits mutation entirely; TAG3PM,
which substitutes subtree mutation with balanced duptinat

While the genotype representations considered here differ - .
all are eventually converted to a standard expression tnee fahd truncation; and LSTAG3P10 and LSTAG3PS50, which

evaluation. For comparability, all compression measuréme %T:I gza:tritrl]()\?v’ithbg;l:ﬁge(rjegsel(i:g;g(l)yn ;2 dipl?nfzgiosges%ietﬁ
are performed on expression trees, not on the prima; P ’

genotypic representation. Compression and simplificatioar:eri'\ginit:;Jastigstr:ﬁ f;:gt;g@ Detailed parameter settings
parameter settings are given in table I. 9 o .

For the second analysis, we drew on experiments on
B. Problem Domain developmental evaluation [6], which has been proposed as

The problem domain was a symbolic regression, in which mechanism to promote structural regularity in GP. In

GP was tasked to find a function fitting 20 points generate@?l(_)gy with biological systems, this mechanism eva_\lga_ltes
by a simple polynomial expression — in this caBg(x) — individuals throughout development to promote adaptibili

X+ X2+ + ...+ X1 for various values oh. We used the and hence select for regular structure. For developmental

grammar in table Il to define the solution space. After EDsevaIuatmn, it is essential to have a series of problems of

further symbols may appea. is extended with a further Ihcreasing difficulty; in this case, we used the function set
non-terminal CONST. and T with two further terminals, F1,...Fg. We simulate developmental evaluation by evaluating

0,1, while P is extended with two additional productions: € indviduals, as they grow, on successively more difficul

EXP—» CONST and CONST— 011 For our first analysis, problems from the problem family. In these experiments, five
— — 0 ur-ti SIS ireatments were used: standard Koza-style GP, the TAG3P

we drew on experiments from [5] using the duplication ] . )
operator, which selects a random node in the current tre%yStem as above; DEVTAG, which uses TAG3P's evolu-

copies the subtree rooted at that point, and re-inserts it té(gnary algorithm, but replaces the evaluation of a single

another point in the tree. Since the duplication operatmmel ?lieculle with evall;Jatlort]_ durln]cg]thde\_/rilgp?went. Sﬂ:égpls
results in uncontrolled bloat, we balanced it with a truiwrat axen to mean, sub-sections of ihe ree); e

operator, which deletes a randomly-selected subtree. ical developmgr_nal system, evolving an L-system which
anticipated that duplication would be very effective in Isuc generates an individual through a series of stages, eealuat

. . : [ lopment as above; and DTAG3PF9ALL, which
a highly structured problem domain. In fact, it erformedjurlng deve ’ ’
gnty P P uses the DTAG3P developmental process, but conducts all
2Where more than one random tree of a given size was found, we usEyaluations oq the final funCt'Orﬁgl(aS do Sta.ndarq GP and
the worst compression ratio). TAG3P). Detailed parameter settings are given in tables Ill



TABLE V

DEVELOPMENTAL EXPERIMENT. PARAMETER SETTINGS
Objective Find aRy (GP, TAG3P) orF,F,...F9
(DEVTAG, DTAG3P) fitting a sample of
20 (xi,yi) data points

Sum of errerg = 0.01

crossover between rules, sub-tressover
and sub-tree mutation on successors for
DTAG3P;
sub-tree crossover and sub-tree mutations
for GP, TAG3P and DEVTAG

Success Predicate
Variation Operators

Probabilities Crossover 0.9; mutation 0.1
TAG Min/Max initial size 2 to 1000

Max depth for GP 20

# of DTAG3P rules 8

Min/Max # of [B-trees in 1to5
each successor (DTAG3P)

Regularity
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Ill. RESULTS plified Trees

generation, averaged over 30 runs. Figurfe shows the
structural regularity for the fittest individual in each run
averaged over the 30 runs. Figures 4, 5 were constructed
by taking the best individual in a generation from each of
the 30 runs, and compressing the whole. Figures 6, 7 show
the results of compressing the whole population in each
generation (again, averaged over 30 trials). Table VI shows
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TABLE VI

DUPLICATION EXPERIMENT: END OF RUN COMPLEXITY VALUES®
INDIVIDUAL MEANS INDIVIDUAL COMPLEXITY ; POPULATION MEANS POPULATION COMPLEXITY, BETWEEN MEANS BEWEENRUN COMPLEXITY;
RAW MEANS UNSIMPLIFIED TREES SIMP. MEANS SIMPLIFIED TREES

Complexity| SYSTEM | TAGCROSS TAG3P TAG3PM LSTAG3P50 LSTAG3P10
Measure
Individual | Raw 0.3647+£0.1452 02220+£0.1187 02383+0.1415 03949+0.1285 04416+0.1772
Simp. 0.5634+0.1674 04605+0.1545 04718+0.1689 04689+0.1821 059944+0.1717
Population | Raw 0.6921+0.0335 065044+0.0219 06291+0.0227 05256+0.0668 04967+0.0370
Simp. 0.8090+0.0455 (07710+0.0401 07424+0.0401 05691+0.0899 05997+0.0355
Between Raw 0.2157 01875 02038 02204 02822
Simp. 0.5134 04542 04535 03841 05383
1 11 : :
r TAG3P
0.9 101I - - -GP
DEVTAG
08F o - - -DTAG3P
———————— f —— DTAG3PF9ALL
0.7 - 8! i
5 06 P L é 7
g S 6
3 05 4
& £ 5
0.4 w
2 4
0.3 TAGCROSS| @
- — - TAG3P 3
0.2f TAG3PM 2
= = = LSTAG3P50 !
01r —— LSTAG3P10| ] 1 kl T —
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Generations Generations * Developmental Stages

Fig. 7. Duplication Experiment: Population Complexity: Siifiptl Trees Fig. 8. Developmental Experiment: Median Best Fitness vs fime

09| 09

the end-of-run values for these measurentents
Figures 2 and 3 are provided primarily for reference, since *
they are discussed in more detail in [13]. Points to noteénth ¢
latter include the high regularity generated by local dearc
with duplication/truncation, especially in the effectigede;
the gradual increase in regularity when crossover is thg onl
operator, i.e. in the absence of any form of mutation, again
especially for effective code; and the reduced regularity iFig. 9. Developmental Experiment: Individual Complexity veng# (left:
effective code generated with a greater depth of local eard/nsimplified Trees; right: Simplified Trees)
Figures 4 and 5 may be seen as estimating the extent

of regularity between runs — the propensity of the partic- ) ) ) )
ular system to construct its best solutions from the sanfdl €ventually reaching much higher regularity, with the

components in repeated runs. The most notable point is tHEPSSOVer-only treatments generating slightly lower texgty

much higher regularity in effective code than in overallepd than the other two. The effective code exhibits substdptial

and we note a trend toward increasingly regular effectivV1ore regularity than the ineffective code. _

code in the crossover-only runs, shared more weakly by the!N the developmental evaluation expgrlments, thg figures

runs in which duplication/truncation functioned as mutati [0!l0W the same structure as for the duplication experirsfent

operators. Figure 8 _shows the fitness of the best_ individual in
In figures 6 and 7, the two local search treatments beha§@Ch 9eneration, averaged over 30 runs. Figdrestiows

very similarly in population regularity, as do the otheretay the structural regularity for the f|ttgst individual in each
run, averaged over the 30 runs. Figures 10 and 11 were

constructed by taking the best individual in a generatiomfr

3Individual complexity is measured as the mean and standarctitevi
(over all runs) of the compression complexity of the best iilligl in the
run; population complexity is measured as the mean (over afl)rahthe
compression complexity of the whole population. Betweersrcomplexity
is measured as the compression complexity of the set formed frerhdst
individual of each of the runs, so no mean or standard devigioalculated.

“4In the developmental figures, theaxis shows the number of generations
times the number of developmental stages, so as to give a fairazsop
— in terms of function evaluations — between developmental ok
developmental systems.



Regularity
o
u

o
S
T

VT PN

T T
TAG3P
- - =GP
DEVTAG
= = = DTAG3P \
——+— DTAG3PFOALL ||

Fig. 10. Developmental Experiment: Between-Experiments Cexitylvs

. . . .
200 300 400 500

. . . .
600 700 800 900

Generations * Developmental Stages

Time*: Unsimplified Trees

Regularity
o
u1

: :
TAG3P
---GP
DEVTAG
- = = DTAG3P 4
—+— DTAG3PFIALL

.
0 100

Fig. 11. Developmental Experiment: Between-Experiments Cexitylvs

. . . .
200 300 400 500

. . . .
600 700 800 900

Generations * Developmental Stages

Time*: Simplified Trees

091

0.8

0.7F

Regularity
o o o co o
N w S u =
T T

o
o

o

TAG3P
---GP

DEVTAG
- - =DTAG3P
—— DTAG3PFIALL| 1

.
0 100

Fig. 12.
Unsimplified Trees

. . . .
200 300 400 500

. . . .
600 700 800 900

Generations * Developmental Stages

Developmental Experiment: Population Complexity wnef:

~ A~~~ 7=
ppo e =T

Regularity

=}
IS
T

TAG3P
---GP

DEVTAG
- = = DTAG3P
0.1r —— DTAG3PFOALL| ]

. . . . . . . . .
0 100 200 300 400 500 600 700 800 900
Generations * Developmental Stages

Fig. 13. Developmental Experiment: Population Complexity wméf:
Simplified Trees

each of the 30 runs, and compressing the whole. Figures 12
and 13 show the results of compressing the whole population
in each generation (again, averaged over 30 trials). Table V
shows the end-of-run values for these measurements.

Figure 9 reveals that developmental evaluation with an L-
system developmental process generates by far the highest
regularity. If developmental evaluation is omitted, an L-
system can initially generate high regularity, but it isicéy
lost. Regularity is generally higher in the effective code
than in the ineffective. Standard GP exhibits substagtiall
lower regularity than any of the other systems, especially i
effective code.

Interestingly, figures 10, 11 show a large difference be-
tween the uniformity of building blocks found by different
runs with L-systems development, and with non-develop-
mental evolution. In the latter case, there is very little
evolution of regularity in the overall code, and not much
more in the case of standard GP in the effective code. That
is, different runs do not discover similar building blocks
to any great extent. For TAG-based runs, there is a little
more regularity in the effective code components, but it
is only modest. By contrast, the L-system developmental
systems discover very similar solution components in every
run, especially in the case of DTAG3P.

At the population level, figures 12, 13 show intriguing
effects. All three developmental systems show greaterevol
tion of overall regularity (that is, spread of building bk}
than does the non-developmental TAG system. Surprisingly,
this effect disappears in the effective code. All systems
exhibit a (high) degree of regularity. On the other hand,
standard GP shows higher regularity still, in both overat a
effective code, than do any of the other systems.

IV. DISCUSSION

A. Duplication/Truncation Experiments

Compression between runs tells us about the propensity of
runs to discover solutions composed of similar components.
From these figures, we can see that effective code exhibits



TABLE VII

DEVELOPMENTAL EXPERIMENT: END OF RUN COMPLEXITY VALUES®
INDIVIDUAL MEANS INDIVIDUAL COMPLEXITY ; POPULATION MEANS POPULATION COMPLEXITY, BETWEEN MEANS BEWEENRUN COMPLEXITY;
RAW MEANS UNSIMPLIFIED TREES SIMP. MEANS SIMPLIFIED TREES

Complexity| SYSTEM | TAG3P GP DEVTAG DTAG3P DTAG3PF9ALL
Measure
Individual | Raw 0.1672+0.1267 009674+0.1001 01707+0.0946 07125+0.2420 041434+0.2660
Simp. 0.2174+0.1144 017954-0.1027 03269+0.2226 065354+-0.3083 05563+0.3436
Population | Raw 0.6772+£0.0457 093404-0.0545 Q7672+0.1044 082764-0.0164 08377+-0.0433
Simp. 0.8156+0.0227 096504-0.0342 08454+0.0736 08468+0.0210 0849240.0509
Between Raw 0.2417 00818 01942 08851 08841
Simp. 0.3461 01673 02796 08683 09038

far more regularity than ineffective code, yet the within-B. Developmental Experiments
individuals regularity is generally similar for overall dfor
effective code. We thus reach the (not altogether surgjsin
conclusion that, at least for this probl_em, selech_on AMESS regularity, but that without developmental evaluationgyth
ha_s _acted to ensure that the effectlve_ code f|_nds S|mll%uld not select for it in effective code.
guglgggn?lgtcglsl Toreicehirrlté?f’etc)tlij\tetr::f dtahls effect is weaker, \vith petween-runs regularity, the complete dichotomy
' ' between developmental and non-developmental systems is
It is difficult to determine whether the increase in regularnoteworthy. Developmental runs clearly generate the same
ity seen in between-runs compression indicates the gradwamponents over and over in different runs, but non-develop
discovery of similar building blocks, or simply reflects tine  mental systems do not. This similarity is not simply the fesu
crease of regularity within the individual solutions. Haee of internal self-similarity, since it occurs with DTAGF9AL
the effect is most marked in those cases — crossover-only awtlich shows no tendency toward evolving self-similarity.
duplication/truncation-mutation-only — where an inceeas The population results were quite surprising, especially
within-individual is most marked, suggesting that thedatt the very high level of regularity generated by standard GP.
is quite likely. That is, standard GP is much more effective at spreading
code components throughout the population than any of the

It is worth noting that this inability to separate such effec :
constitutes one of the main limitation of these compressio-FfA‘G'baS?d -appro ache_s - even TAG3P, whose eV(_)Iu'_uonary
rocess is identical with that of standard GP. This is not

techniques. While regularity effects might be observeds it iP ) . . o L .
often difficult to determine precisely what is the source ollnconcewable, since even if TAGSP exhibits a similarlyfhig

the regularity, since there is no sensible way to compresspétOpenSity Fo g(.en'erate ;imilar building blocks in it§ nativ'
set of trees without also compressing the individual trees. representation, It is po_ssuble that the 2-sta}ge mappmgrw_hl
generates the expression tree representation from thiealrig

From the population compression results, we can draTAG representation may distort such regularity. But it is
a number of interesting conclusions. First, it is clear thagurprising, since one might expect such distortion to also
the effective code has a much higher tendency to discovgssult in the TAG-based systems performing poorly — the
common building blocks than does the ineffective code, preeverse of our experience.
sumably because of the higher selective pressure it is&ubje
to. Second, that the selection of such components continues
throughout the run, particularly for the effective codeirdih
that the effect is stronger in the case of crossover-onlys,rur'(a"
perhaps because mutation exerts a slight disruptive edfect The main conclusion of this work is that compression-
the spread of building blocks. Fourth, that there is a muchased metrics can tell us a great deal about the behaviour
lower rate of increase of regularity in the local search run®df GP systems, and in particular, about their tendency to
this is partially explainable because the runs are cakbrat share components across a population, or to find similar
to use the same number of evaluations. Since local searcbmponents in different runs. We were able, in section 1V, to
runs are evaluated in every step of local search, there ateaw surprisingly detailed conclusions about the behasiou
correspondingly fewer opportunities for crossover to agre of the different algorithms, at least on the particular peat
code components between individuals. This would partiallgtudied here. In this page-limited paper, we chose to inves-
explain the lower rate of increase of regularity, but theigate the range of questions about building blocks and code
explanation is incomplete, since it does not explain why theeplication that could be handled by compression analyses,
two local search runs have such similar rates of increasather than extending to different problems, since resuits
despite the fivefold disparity in their crossover rate. different problems would be of equal value whether they

The results on individual regularity mostly fitted our
expectations, that developmental methods could generate

V. CONCLUSIONS

Implications of the Work



were confirmatory of the results obtained here, contradicto ACKNOWLEDGMENT

to them, or neutral. All would be interesting. We thank James Cheney for assistance with XMLPPM and
Moonyoung Kang for building the EDS scripts. We thank
them, and Daryl Essam, for insights that led to the present

The PPM tree compression model assumes that a nopaper. This work was supported by the Research Settlement
is predicted well by its context of parent nodes. Thus thBund for new faculty of Seoul National University.
degree of compression reflects the extent to which this model
applies to some data. That is, high levels of compression
imply that it is often the case that the same parent nodes are
often followed by the same child nodes. It is our contention
that this corresponds closely to the normal understanding o
GP building blocks.

Our work is also based on the assumption that linear
interpolation between the extremes of compressibility and
incompressibility is a reasonable way to estimate reguytari
and on the twin assumptions that linear and random trees
lie at those extremes. Everything we have observed so far is
consistent with these assumptions.

Of course, in undertaking this work, we are comparing
regularities of trees of vastly different sizes, espegiati
the developmental experiments [8]. Does this introducea bi
(independent of the previous issue)? This question inteslu
deep issues of the meaning of complexity, far beyond the
scope of this paper; however we note that complexity defini-
tions based on information theory and compression form one
of the primary strands of research in defining complexity [3]

The primary limitation of this approach lies in our inahyilit
to use it to answer some natural questions about the source
of regularity. For example, we can estimate the regularity
of GP populations, and the regularity within individuals.
However we have no way to directly measure the difference.
We can't specify a metric for the degree of repetition betwee
individuals, since we can see no way to remove the effect of
the within-individual regularity.

In principle, the approach is applicable to any GP tree
representation since it can be converted to XML format.
However in the absence of a standardised GP tree represen
tation, this mapping has to be generated for each particular
representation. For this analysis (and it must be said,tf@ro
GP analyses also), it would be highly desirable to have a
standard XML representation for tree-based GP populations

B. Assumptions and Limitations

C. Future Extensions

In its present form, the compression analysis can only
estimate the extent to which GP components are repeated
across a population; it gives no indication of how those
components are conserved from generation to generation. In
principle, however, compression approaches could achieve
this. If we were to use the population from one generation,
generationt, to generate a compression model, but use that
model to compress a second generation, generatidg we
would in effect be estimating the extent to which common
components from the first population were repeated in the
second. That is, we would have a way to measure the
conservation of components from generation to generation.
We are currently working on this extension.
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