
� � � � � � � � � � � � � 	 � 	
 � � � � � � � �
 � � 	 � � � � 	 � � 	 � � � 	 � � � � � � � � � � � � 	 � � � �
� � �
 � � � � � 	

� � � � � � � � � ! "
$ % & & ' & () & * + , - . / # $ 0 . 1 $.

2 , 3 - / 4 ' 0 4 1 5 . (. 1 $. 6 & / $. 2 $ 4 7 . * 8
9 & / - % $ & - - 5 / 0 : . ;) 4 * + < . ' ' ; 2) = > ? @ @ 2 , 3 - / 4 ' 0 4

/ 0 * A $ 3 B 4 7 (4 B . 7 , B 4 ,

C D E F G H I F
J K L M N O N P Q L R S P M T L U O T P M T K P O N N V L W O T L X R X Y W X Z Z L T T P P

V P O Q R L R U T X Y L T R P M M [M K O Q P \ U P R P T L W N Q X U Q O Z Z L R U]
^ X Z Z L T T P P V P O Q R L R U L M O N N V L P \ T X N X N _ V O T L X R M X Y P L T K P Q

N O Q T L O V O R \ T X T O V Y _ R W T L X R M ` O R \ _ M L R U P L T K P Q Y L T R P M M
M K O Q L R U X Q Q O a Y L T R P M M ` U L S L R U Y X _ Q T Q P O T Z P R T M L R O V V] J K P
O N N Q X O W K P M O Q P W X Z N O Q P \ X R T K Q P P N Q X b V P Z M ` T K P c [O R \

d d [Z _ V T L N V P e P Q N Q X b V P Z M ` O R \ V P O Q R L R U Q P W _ Q M L S P V L M T
Z P Z b P Q M K L N Y _ R W T L X R M] f M P e N P W T P \ ` Y L T R P M M M K O Q L R U U O S P
b P T T P Q N P Q Y X Q Z O R W P X R O V V N Q X b V P Z M T K O R Q O a Y L T R P M M] J K P
W X Z N O Q L M X R b P T a P P R N X N _ V O T L X R M X Y N O Q T L O V O R \ T X T O V

Y _ R W T L X R M a L T K Y L T R P M M M K O Q L R U L M Z X Q P P g _ L S X W O V] J K P
Q P M _ V T M O Q P S P Q h M L Z L V O Q ` T K X _ U K M V L U K T V h L R Y O S X _ Q X Y T X T O V

Y _ R W T L X R M] i X a P S P Q T K P Q P O Q P M T Q X R U L R \ L W O T L X R M T K O T T K P
O S P Q O U P M L j P X Y L R \ L S L \ _ O V M L R T K P N O Q T L O V Y _ R W T L X R

N X N _ V O T L X R M O Q P M Z O V V P Q ` O R \ K P R W P Z L U K T b P P e N P W T P \ T X
U P R P Q O V L M P b P T T P Q ` T K X _ U K T K L M a O M R X T L R S P M T L U O T P \ L R T K L M

N O N P Q]
k R \ P e T P Q Z M [[W X Z Z L T T P P V P O Q R L R U ` Y L T R P M M M K O Q L R U `

U P R P T L W N Q X U Q O Z Z L R U ` N O Q T L O V Y _ R W T L X R M ` N X N _ V O T L X R
\ L S P Q M L T h

l m n o p q r s t u p v r o
Genetic programming, like other forms of evolutionary
computation, can suffer from premature convergence.
Fitness sharing [1] is one of a number of approaches used
by the evolutionary community to maintain population
diversity and delay premature convergence. A variant,
implicit fitness sharing, [2] is particularly well suited to
many of the forms of learning problems which arise in
genetic programming.

Previous work by the author [3] applied fitness sharing to
grammar-guided genetic programming, and demonstrated
dramatic reductions in error at convergence on three
problems: the 6- and 11-multiplexer problems, and
learning recursive list membership. A second paper [4]
introduced populations of partial functions, and
demonstrated a small but significant improvement in
performance of the fittest population member at
convergence on recursive list membership, but

inconclusive results on the two multiplexer problems. A
difficulty in that work lay in comparing partial and total
individuals, since a partial function by definition does not
cover the whole of the learning set, so in some problems it
was necessary to gradually introduce evolutionary
pressure toward totality in order to ensure comparability.
It was conjectured there that populations of partial
functions might be better suited to committee learning
approaches, since these remove the necessity for the
evaluated individuals to cover all learning cases. This
paper investigates that conjecture, and presents further
results. For completeness, the two fitness sharing methods
are also compared with the use of raw fitness in
populations of partial and total functions. It had
previously been noted that generations using partial
functions appeared to complete faster than those using
total functions; timings for the runs in these experiments
were kept, and a comparison made.

w m x y p z v { | r } ~ y p � r s

� � � � � G H � � H G � � � � � � � � � � F � I � G � � G H � � � � �
� �

 � � � � � � � � � � � � � � � � � ¡ ¢ £ � � � � � � � � � � � � � � ¤ ¥ � ¦ � ¦ §
 � � � � � � � � � � � ¨ � � � � ¡ © £ ª « � � � � � � � � � � � � � � � ¦ § ¬ � � �
� � � � � � � � � � � � � � � � � � � � � � ­ ¨ � � � � � � ® � � � � � � � � � � � � ¬
� � � � � � � � � � ¯ � � � � ° � � � � � � � � � � � � � � ­ ¨ � � � � � � � � � � � � � � �
� � � � � � � ª � � � � � � � � � � � � � � � � � � � � � ­ ¨ � � � � � � � � ¯ � � � � ° � �
� � � � � � � � � � ­ ¨ � � � ° � � ¯ � � � � � � � � � � � � � � � ± � � � � � � � � � �
� � � � � � � ° � � ¨ � � � � � � � � � � ° ° � � � � � � � � � ° � ¬ ­ � � � � � � � � ¯ � � � � � �
� � � � � � � � � � ° � � � � � ° � � � � ° � � � � � � � � � � ° � � � � � � � � � � � � � � � �
 � � � � � � � � � � ¬ ­ � � � � � � � � � � � � � � � � ¨ � ­ � ° � � � ° � � � � � � � �
 � � � � � � � � ¬ ­ � � � � � ° � ­ � ° � �
� � � � ­ ° � � � � � ¦ § � � � � � � � ° � � ¨ ² ª ¤ ¥ � ¦ � ¦ § � � � � ¤ � � � � � � �
¥ ° � � � � � � � � � � � � � � � � � � ¡ ³ £ � � � � � � � � ­ � � � � � � � ¨ � � � ® � � �
� � � � � � � � � � � � � � � � � � ­ ´ � � � � � � � � � � ¬ � � � � � � � � � � � � � � � � � �
� � � � ° � � � ° ¨ � � � � � � � � � � ¨ � � � ® ª µ � � � ¯ � � � � � � � � � � � �
� � � � � � ­ � � � � � � ¬ � ° ¨ � � � � � � � � �
� � � � � � ° ¨ � � ¨ � � � ¨ � � � ® ¬ � � � � � � � � � � � � � � � � ° � � ® � � � � � �
� � � � � � ° ¨ � ¨ � � � � � � � � � � � � � � � � � � � ¡ ¶ £ � ® � � � � � � � � � � �
� � � � � ­ ° � � � � � � � � � � � � � � � � ¯ � ° � � ª

rim
Text Box
This is a self-archived copy of the accepted paper, self-archived un- der IEEE policy. The authoritative, published version can be found at http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=972452&tag=1

� � � � · � ¸ ¹ � I � F º � F � � E E » ¼ H G � � �
Implicit fitness sharing makes the assumption that the
fitness of each individual in the population is calculated as
the sum of rewards for a number of cases:

The implicitly shared fitness is then calculated by dividing
the reward amongst all individuals which make the same
decision for that case:

� � ½ � � H G F � H ¹ º � � I F � � � E
By a partial function we mean a function whose value, for
some arguments, is undefined. In this work, this is
achieved by adding, for each nonterminal in the grammar,
a production leading to a distinguished 'undefined' value.
For example, the following might be a fragment of a
grammar for boolean functions:

BOOL → BOOL ∧ BOOL
BOOL → BOOL ∨ BOOL
BOOL → ¬ BOOL
BOOL → UNDEF

Semantically, UNDEF always evaluates to the undefined
value φ. In this work, lazy evaluation is used:

true ∧ φ = φ ∧ true = φ
false ∧ φ = φ ∧ false = false

but eager evaluation would not be inconsistent with the
approach.

� � ¾ � ¿ � � D � � � � � � H G F � H ¹ º � � I F � � � E H � � º � F � � E E
À Á H ¹ � H F � � �

When functions are permitted to be partial rather than
total, we can distinguish between the accuracy of an
individual and its coverage - an individual may be highly
accurate on those cases which it chooses to predict, but
that may be a small percentage of the overall set of cases,
so the individual may have poor coverage. This is the core
idea behind the introduction of partial functions to genetic
programming, permitting individuals to concentrate on
those parts of the problem on which they perform best.

Hence it is appropriate to reward individuals for accuracy
rather than coverage, and rely on the overall population-
based evaluation strategy to ensure coverage. Since
implicit fitness sharing will place evolutionary pressure on
the overall population to diversify, we can expect it to
provide complete coverage by the population as a whole.

Hence in the fitness sharing runs, the fitness evaluation
used accuracy as the fitness measure (ie the overall fitness
is the shared fitness divided by the number of cases for
which the individual is defined).

f i
reward i c

N i reward i cpart share

i i c i c
c cases

_

: '

() =
()()

() ∗ ′()()
′ ()= ()

∈ ∑∑

Where partial functions are evaluated using raw fitness, if
accuracy were used as the measure, there would be no
pressure on the population to provide complete coverage
of the cases. Hence for these runs, coverage is used as the
measure of overall fitness - an undefined value is simply
treated as an incorrect answer.

� � Â � ¿ � � � � F F � � À Á H ¹ � H F � � �
There are many possible ways of evaluating the
predictions of a population. In this work, a simple
weighted voting approach was used. Preliminary
experiments with linearly-scaled voting suggested that
this gave insufficient weight to the fittest members of the
population, so the voting weights used the square of the
fitness of the individual. The prediction of the population
as a whole on a given case was taken to be the prediction
with the highest voting weight (for partial functions,
'undefined' predictions were not counted).

Ã Ä Å Æ Ç y q v È y o p z { x y | v É o
Three experimental problems were used:
• the 6-multiplexer problem
• the 11-multiplexer problem
• recursive list membership

The 6-multiplexer problem is to predict, from the inputs,
the outputs of a multiplexer having two address and four
data lines. The search space is the set of boolean
combinations of the address and data values using 'and',
'or', 'not' and three-way 'if' combinators.

� � ­ ° � Ê Ë © � � � ° � � ° � ® � � ¦ � � � � � �
EXPR → BOOL
BOOL → TERM
BOOL → and BOOL BOOL
BOOL → or BOOL BOOL
BOOL → not BOOL
BOOL → if BOOL BOOL BOOL
TERM → a0
TERM → a1
TERM → d0
TERM → d1
TERM → d2
TERM → d3

f i reward i craw
c cases

() = ()()
∈
∑

f i
reward i c

reward i cshare

i i c i c
c cases

() =
()()

′()()
′ ()= ()

∈ ∑∑
: '

The 11-multiplexer problem is to predict the outputs of a
three address, eight data line multiplexer; the grammar is
extended with terminals for the additional inputs.

The recursive list membership problem is to learn, from a
set of positive and negative cases of list membership, an
expression for a recursive membership function using a
lisp-like language.

� � ­ ° � Ì Ë Í � � � Î � � ­ � � � � � ¦ � � � � � �
S → M
M → if EXPN EXPN M
M → ''
EXPN → atom LST
EXPN → eq LST LST
EXPN → member x LST
EXPN → true
EXPN → false
LST → first LST
LST → rest LST
LST → x
LST → y

When a system is to learn recursive functions, an
additional choice has to be made: whether the recursions
are to be evaluated intensionally (ie from further calls to
the defined function) or extensionally (ie from the actual
values in the data). There are problems with extensional
evaluation with incomplete datasets, so we chose to use
intensional evaluation. However this introduces an
additional problem, namely the risk that a recursion may
be infinite. Rather than attempt to detect infinite loops
syntactically (in general, an uncomputable problem), we
have chosen a simple semantic expedient: a count is kept
of the depth of recursion, and any depth greater than a
fixed count evaluates as 'loop'. The 'loop' value is treated
much like the 'undefined' value, except that at the top level
it is treated as an 'incorrect' answer (other choices could
be made here, but they would lead to difficulties in
comparing partial and total function populations). The
fixed depth was chosen as 15, on the basis that the longest
lists presented as cases have 10 elements, so further
recursion is unlikely to be productive.

The experiments used half-ramped initialisation and
tournament selection. Parameter settings are given below:
They differ from the experiments reported in earlier
papers [3,4] chiefly in running smaller populations for
more generations, as some difficulty had been experienced
in that work in ensuring that the runs actually reached

convergence. Longer runs and smaller populations would
both be expected to result in earlier convergence, and thus
permit differences to be seen within the computationally
accessible region.

� � ­ ° � Ï Ë Î � ° � � ° � ® � � ¦ § § � � � � � � � � �
Ð Ñ Ò Ñ Ó Ô Õ Ô Ò Ö Ð Ô × Ø Ù Ø × Ñ Õ Ø Ú Û
Number of Runs 100
Generations per Run 200 / 500
Population Size 150
Max depth (initial pop) 8
Max depth (subsequent) 10
Tournament size 5
Crossover Probability 0.9
Mutation Probability 0.1

For the 6 multiplexer, the raw fitness was the proportion
of the 64 cases correctly predicted. For the 11 multiplexer,
computational considerations prevented use of all 2048
cases. Instead, each generation a random selection of 64
cases was made, and evaluation conducted against those.
An independent selection was made at each generation.

The 6-multiplexer runs were terminated at 200
generations, and the 11-multiplexer at 500 generations, or
earlier if population evaluation gave a 100% accurate
solution. In the 11-multiplexer case, the population was
tested only against the 64 cases in the final generation.
This might have resulted in the acceptance of populations
which would not extend accurately to the full 2048 case
set, but this does not affect the comparative evaluations
which are the focus of this work.

� � ­ ° � Ü Ë Í � � � Î � � ­ � � � � � ¦ § § � � � � � � � � �
Ð Ñ Ò Ñ Ó Ô Õ Ô Ò Ö Ð Ô × Ø Ù Ø × Ñ Õ Ø Ú Û
Number of Runs 100
Generations per Run 200
Population Size 500
Max depth (initial pop) 8
Max depth (subsequent) 10
Tournament size 5
Crossover Probability 0.9
Mutation Probability 0.1

For the list membership problem, the population was
evaluated against 20 cases, 10 positive and 10 negative.

� � ­ ° � ¢ Ë Í � � � Î � � ­ � � � � � ¥ � � � �
Ð Ú Ö Ø Õ Ø Ý Ô × Ñ Ö Ô Ö Û Ô Þ Ñ Õ Ø Ý Ô × Ñ Ö Ô Ö
member(1 [1]) member(1 [6])
member(1 [2 1]) member(1 [3 6])
member(1 [2 3 1]) member(1 [2 3 6])
member(1 [2 3 4 1]) member(1 [2 3 4 6])
member(1 [2 3 4 5 1]) member(1 [2 3 4 5 6])
member(1 [2 3 4 5 6 1]) member(1 [2 3 4 5 6 7])
member(1 [2 3 4 5 6 7 1]) member(1 [2 3 4 5 6 7 8])
member(1 [2 3 4 5 6 7 8 1]) member(1 [2 3 4 5 6 7 8 9])
member(1 [2 3 4 5 6 7 8 9 1]) member(1 [2 3 4 5 6 7 8 9 2])
member(1 [2 3 4 5 6 7 8 9 2 1])member(1 [2 3 4 5 6 7 8 9 2 3])

Each experiment involved four separate treatments:
• raw fitness, populations of total functions
• fitness sharing, populations of total functions
• raw fitness, populations of partial functions
• fitness sharing, populations of partial functions

ß m à y | t { p |

¾ � � � á â ã � ¹ F � ¸ ¹ � ä � G å � E � ¹ F E
The percentage of runs which terminated in a correct
voted solution are shown in table 6 and plotted in figure 1:

� � ­ ° � © Ë § � � � � � � � � � � � æ � � � ¦ � � � � � � � � � ¥ � � � � � � ç � ° � � � � �

Total Functions Partial Functions
Raw Fitness 61 4
Fitness Sharing 98 98

è � � � � � Ê Ë é æ � � � « � � � � ° � � � ¬ © Î � ° � � ° � ® � �

Figure 2 shows the mean of the depth of the trees used for
the six multiplexer problem (generations before 30, and
the partial functions with raw fitness run, are omitted from
the plot in order to concentrate on the area of interest).
The trees in the partial functions / shared fitness treatment
are in general considerably smaller up to about generation
150, at which point the 'total shared' and 'partial shared'
plots are based only on the two remaining incomplete
runs, and so may not be reliable indicators.

è � � � � � Ì Ë Î � � � ¤ � � � � � � � � � � ¬ © Î � ° � � ° � ® � �

� � ­ ° � ³ Ë ¥ � � � � � � � � � � ° � � � � ¬ © Î � ° � � ° � ® � �

Raw Fitness Fitness Sharing
Total Partial Total Partial

cpu/Run 1464.01 1038.97 373.49 410.79

Generations/Run 128.06 198.00 41.94 61.31

cpu/Generation 11.6 5.27 8.68 6.47

cpu times are in seconds

¾ � � � � � â ã � ¹ F � ¸ ¹ � ä � G å � E � ¹ F E
The results for the 11 multiplexer are shown in tables 8
and 9 and plotted in figures 3 and 4:

� � ­ ° � ¶ Ë § � � � � � � � � � � � æ � � � ¦ � � � � � � � � � ¥ � � � � � � ç � ° � � � � �

Total Functions Partial Functions
Raw Fitness 11 0
Fitness Sharing 81 72

è � � � � � Ï Ë é æ � � � « � � � � ° � � � ¬ Ê Ê Î � ° � � ° � ® � �
Tree depth results and run-times for the 11 multiplexer are
shown in table 9 and figure 4 (early generations and
'partial raw' run are omitted to concentrate on the area of
interest).

è � � � � � Ü Ë Î � � � � � � ¤ � � � ¬ Ê Ê Î � ° � � ° � ® � �

� � ­ ° � ê Ë ¥ � � � � � � � � � � ° � � � � ¬ Ê Ê Î � ° � � ° � ® � �

Raw Fitness Fitness Sharing
Total Partial Total Partial

cpu/Run 8257.80 3109.31 4371.97 3823.90

Generations/Run 485.34 500.00 305.04 371.21

cpu/Generation 16.99 6.22 13.93 10.23

cpu times are in seconds

¾ � ½ � ë � E F ã � � D � G E ¼ � ¸ å � E � ¹ F E
The list membership results are shown in tables 10 and 11,
and figures 5 and 6.

� � ­ ° � Ê ì Ë § � � � � � � � � � � � æ � � � ¦ � � � � � � � � � ¥ � � � � � � ç � ° � � � � �

Total Functions Partial Functions
Raw Fitness 42 32
Fitness Sharing 62 57

è � � � � � ¢ Ë é æ � � � « � � � � ° � � � ¬ Í � � � Î � � ­ � � � � �

� � ­ ° � Ê Ê Ë ¥ � � � � � � � � � � ° � � � � ¬ Í � � � Î � � ­ � � � � �
Raw Fitness Fitness Sharing

Total Partial Total Partial
cpu/Run 2669.03 2841.90 1600.10 1597.01

Generations/Run 131.89 147.13 100.19 109.22

cpu/Generation 20.53 18.59 15.20 14.61

cpu times are in seconds

Figure 6: Mean Depth of Trees, List Membership

í m x v | u t | | v r o
The results are quite clear on one point: implicit fitness
sharing outperforms raw fitness by large margins in every

experiment. This reinforces the results of [3], but
demonstrates that the differences are even larger with
committee learning than with individual evaluation. In
general, the results on comparison of partial and total
functions are more equivocal. It is unsurprising that partial
functions perform poorly when combined with raw
fitness; the experiments were included for completeness,
rather than because the approach made sense.

On the issue which was the main focus of this work, the
comparison of partial and total functions using fitness
sharing, there is no strong result: the behaviour at
convergence of the two treatments is very similar. This
could be seen as an implicit argument in favour of
populations of total functions: if the convergent behaviour
of both is similar, but the greater eagerness of the total
function search results in lower early fitness, then total
functions might be preferred. However the timing results
give the lie to this: the partial function timings are very
similar to those for total functions, even though the partial
function populations evaluated considerably more
generations overall. Presumably this arises from reduced
complexity of the partial functions, as evidenced also by
the average depth plots. Thus the greater eagerness of the
total function search is offset by the faster per-generation
evaluation of the partial function populations, and there is
little to choose between the two in computation time.

This suggests a further issue. The work carried out here
has looked simply at performance on noise-free and
complete (or in the case of the 11-multiplexer problem,
near-complete) datasets, hence generalisation is not an
issue. But the primary aim of committee learning
approaches in particular is to improve generalisation
ability. The smaller depth and faster evaluation of the
partial function populations suggest that they have been
more subject to Occam's razor; in turn, this would suggest
that they are less likely to be overfitted to the training
data, and may generalise better. The next phase of this
work will investigate the relative generalisation ability of
partial and total function populations on both synthetic
and real-world datasets.

î m ï r o u { t | v r o |
� � � � � � � ° � � �

° � � � � � � � � � � � ° ° � ¬ � � � � � �
­ � � � � � � � � � ° � � � � � � ­ � ª � � �
� � � � ° � � � � � � � � � ° ¨ � ð � � ¯ � � � ° � � � � � � � � � � � � � � ­ � � � � � �
 � � ° � � � � � � � � � � � � � ° � � � � � � � � � ° � � � � � � � � � ¬ � � � � � � � �
� � ¯ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ¯ � � � � � � � � � � ª

C I ñ � � ò ¹ � � � � � � F E
� � � � � � � � � � � � � � � � � � � ¯ � ­ � � � � � � � � � � � � � ° ¨ � � � �

� � � � � � � � � � � � ¯ � � � � � ¨ � � � � � � � � § � � ° ¤ � � � � � ¬ § � � � �
ó � � � � � � ¬ ô � � õ � � ¬ ö � � µ � � � Í � � � � ¬ µ � � � � � � ÷ ­ ­ � � � ¬ � � �
� � � � � � � � ­ � � � � � � � � Î � � � � � � « � � � ° ° � � � � � � � � �
¥ � � � � � � � � � � � � ¦ � � � � � � � � ÷ � � � � � ° � � � ¤ � � � � � � è � � � �
÷ � � � � � ¨ ª � � � � ¨ � � � � � � � ­ � � � � � ° � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � ø � � � � æ � � � ù � � � � ¯ � � � ¯ � ¤ ¥ � ¦ � ¦ §
� ¨ � � � � ¬ � � � � � � � � � � � ­ � � � � � � � � � ° ¨ � � � � � � � � � � � ¨ � � � �
� ° � � � � � � � � � � � ° � ­ �
 � � � � � ¨ � � � � � � � � � ¯ � ° � � � � � � � � � � � � ¨ � � � � ª Î ¨ � � � � � �
� ° � � � � � � � � ­ � � � � � � � � ¨ � � � � � � ¯ �
� � � � � � � � � � � � � � ­ � � � � � � � � � � � � � ° � � � ­ � � � � � � � ® � � � � � � � � °
� � � � � � � � � � � ® � � � � � � � ª
à y } y q y o u y |

¡ Ê £
Deb, K and Goldberg, D E: 'An investigation of niche
and species formation in genetic function optimization'
in J D Schaffer (Ed) Proceedings of the Third
International Conference on Genetic Algorithms, Pp
42-50, Morgan Kaufmann, 1989¡ Ì £
Smith, R E, Forrest, S and Perelson, A S: 'Searching
for diverse, cooperative populations with genetic
algorithms', Evolutionary Computation 1(2), Pp 127-
149, 1992¡ Ï £
McKay, R I: 'Fitness Sharing in Genetic
Programming', Proceedings, GECCO 2000¡ Ü £
McKay, R I 'Partial Functions in Fitness-Shared
Genetic Programming', Proceedings, CEC 2000¡ ¢ £
Whigham, P A: 'Grammatically-biased Genetic
Programming' in J Rosca (ed) Proceedings of the
Workshop on Genetic Programming: From Theory to
Real-World Applications, Pp 33-41, Morgan
Kaufmann, 1995¡ © £
Ross, B J: 'Logic-based Genetic Programming with
Definite Clause Translation Grammars', Proceedings
GECCO-99, Morgan Kaufmann, 1999.¡ ³ £
Abramson, H and Dahl, V 'Logic Grammars',
Springer-Verlag, 1989¡ ¶ £
Montana, D J: 'Strongly Typed Genetic Programming',
Evolutionary Computation, 3(2), pp. 199-230, 1995

