Committee Learning of Partial Functions in Fitness-Shared Genetic

Programming
R I (Bob) McKay

School of Computer Science
Australian Defence Force Academy
Northcott Drive, Campbell, ACT 2600 Australia
rim@cs.adfa.edu.au

Abstract

This paper investigates the application of committee
learning to fitness-shared genetic programming.
Committee learning is applied to populations of either
partial and total functions, and using either fitness
sharing or raw fitness, giving four treatments in all. The
approaches are compared on three problems, the 6- and
11-multiplexer problems, and learning recursive list
membership functions. As expected, fitness sharing gave
better performance on all problems than raw fitness. The
comparison between populations of partial and total
functions with fitness sharing is more equivocal. The
results are very similar, though slightly in favour of total
functions. However there are strong indications that the
average size of individuals in the partial function
populations are smaller, and hence might be expected to
generalise better, though this was not investigated in this
paper.

Index terms-- committee learning, fitness sharing,
genetic programming, partial functions, population
diversity

1. Introduction

inconclusive results on the two multiplexer problems. A
difficulty in that work lay in comparing partial and total
individuals, since a partial function by definition does not
cover the whole of the learning set, so in some problems it
was necessary toradually introduce evolutionary
pressure toward totality in order to ensure comparability.
It was conjectured there that populations of partial
functions might be better suited to committee learning
approaches, since these remove the necessity for the
evaluated individuals to cover all learning cases. This
paper investigates that conjecture, and presents furthel
results. For completeness, the two fithess sharing method:
are also compared with the use of raw fitness in
populations of partial and total functions. It had
previously been noted that generations using partial
functions appeared to complete faster than those using
total functions; timings for the runs in these experiments
were kept, and a comparison made.

2. Details of Method

2.1. Grammar Guided Genetic Programming
This work makes use of the grammar-guided genetic

Genetic protamming, like other fans of evolutionary
computation, can suffer from premature convergenceprogramming paradigm [5] in the form of the DCTG-GP
Fitness sharing [1] is one of a number of approaches usgifogramming system [6]. In grammar-guided GP, the
by the evolutionary community to maintain population S€arch space is represented by a context free grammar,
diversity and delay premature convergencevaiiant, and the individuals are represented by parse .tref:s. in thgt
implicit fitness sharing, [2] is particularly well suited to &rammar. The function represented by each individual is

many of the forms of learning problems which arise indeter.mmed by the leaves of the Jarse tree (in ?tandqrd
. . terminology these are called terminals, but that gives rise
genetic programming.

to a terminological conflict with the language of genetic

. . . . programming, because a function symbol is a leaf of the
Previous work by the author [3] applied fitness sharing to__ .. (.o e, but would be regarded as a nonterminal in

grammar-guided genetic programming, and demonStrateEstablished GP terminology). DCTG-GP uses Definite
dramatic reductions in error at convergence on thre,use Transformation (7]
problems: the 6- and limultiplexer problems, and he semantics of the object programs, so that the semantics
!eam'ng recursive |'S_t memberSh'p:%CO"‘d paper [4] are closely tied to the syntax. However for the work
introduced populations of partial functions, and described here, the grammars were used simply to define a
demonstrated a small but significant improvement instrongly-typed syntax, so that the work would extend to
performance of the fittest population member atstrongly typed genetic programming [8] extended with a
convergence on recursive list membership, butsuitable mechanism for representing an undefined value.

to define both the syntax and

This is a self-archived copy of the accepted paper, self-archived un- der IEEE
policy. The authoritative, published version can be found at http://ieeexplore.ieee.
org/xpls/abs all.jsp?arnumber=972452&tag=1

rim
Text Box
This is a self-archived copy of the accepted paper, self-archived un- der IEEE policy. The authoritative, published version can be found at http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=972452&tag=1

2.2. Implicit Fitness Sharing Hence in the fithess sharing runs, the fitness evaluation
Implicit fitness sharing makes the assumption that theused accuracy as the fitness measure (ie the overall fithes
fitness of each individual in the population is calculated ads the shared fitness divided by the number of cases for
the sum of rewards for a number of cases: which the individual is defined).

)= 3 revardi(0) sl = 3 5 Drevgi(v'f?rﬁmc))

The implicitly shared fitness is then calculated by dividing 5=i(0)
the reward amongst all individuals which make the sam&ynere partial functions are evaluated using raw fitness, if

decision for that case: accuracy were used as the measure, there would be n
. pressure on the population to provide complete coverage
£ ()= reward('(c)) of the cases. Hence for these runs, coverage is used as tt
share s (Z reward(i'(c)) measure of overall fitness - an undefined value is simply
ini'(cTzi(c) treated as an incorrect answer.
2.3. Partial Functions 2.5. Committee Evaluation

By a partial function we mean a function whose value, forThere are many possible ways of evaluating the
some arguments, is undefined. In this work, this isPredictions of a population. In this work, a simple
achieved by adding, for each nonterminal in the grammarweighted voting approach was used. Preliminary
a production leading to a distinguished 'undefined' value€xperiments with linearly-scaled voting suggested that
For examp|e, the fo”owing m|ght be a fragment of athis gave insdicient Welght to the fittest members of the

grammar for boolean functions: population, so the voting weights used the square of the
BOOL -, BOOL [1BOOL fitness of the individual. The prediction of the population
BOOL - BOOL BOOL as a whole on a given case was taken to be the predictior

with the highest voting weight (for partial functions,

BOOL ~ ~ BOOL ‘'undefined' predictions were not counted).

BOOL - UNDEF
Semantically, UNDEF always evaluates to the undefine
valueq. In this work, lazy evaluation is used:
trued@=q@0Otrue =@

%, Experimental Design
Three experimental problems were used:

B i . the 6-multiplexer problem
falsel o= ¢ Dfalse = false . .) . the IL-multiplexer problem
but eager evaluation would not be inconsistent with the, recursive list membership

approach.

The 6-multiplexer problem is to predict, from the inputs,

2.4. Combining Partial Functions and Fitness the outputs of a multiplexer having two address and four

Evaluation data lines. The search space is the set of boolean
When functions are permitted to be partial rather tharcombinations of the address and data values using 'and'
total, we can distinguish between the accuracy of anor, 'not' and three-way ‘if' combinators.
individual and its coverage - an individual may be highly
accurate on those cases which it chooses to predict, but
that may be a small percentage of the overall set of cases, Table 1: 6-multiplexer Grammar
so the individual may have poor coverage. This is the coreEYpR - BOOL
idea behind the introduction of partial functions to geneticBOOL . TERM
progamming, permitting individuals to concentrate on BOOL - and BOOL BOOL

those parts of the problem on which they perform best. | BOOL — or BOOL BOOL
BOOL - not BOOL

o . s BOOL - if BOOL BOOL BOOL
Hence it is appropriate to reward individuals for accuragyterm _ a0

rather than coverage, and rely on the overall populationTERM -, a1l
based evaluation strategy to ensure coverage. Sinc€ERM - dO
implicit fitness sharing will place evolutionary pressure on TERM - d1
the overall population to diversify, we can expect it tp TERM — d2

. . TERM - d3
provide complete coverage by the population as a whotre:

The LL-multiplexer problem is to predict the outputs of a convergence. Longer runs and smaller populations would

three address, eight data line multiplexer; thergnar is both be expected to result in earlier convergence, and thus

extended with terminals for the additional inputs. permit differences to be seen within the computationally
accessible region.

The recursive list membership problem is to learn, from a

set of positive and negative cases of list membership, an

expression for a recursive membership function using a Table 3: Multiplexer GP Parameters
lisp-like language. PARAMETER SPECIFICATION
Number of Runs 100
Table 2: List Membership Grammar Generations per Run 200 /500
Population Size 150
S~ M Max depth (initial pop) | 8
M - 'f EXPN EXPNM Max depth (subsequent) | 10
M- Tournament size 5
EXPN - atom LST Crossover Probability 0.9
EXPN - eq LSTLST Mutation Probability 0.1
EXPN - member x LST
EXPN - true For the 6 multiplexer, the raw fitness was the proportion
EXPN - false of the 64 cases correctly predicted. For theriultiplexer,
LST - first LST computational considerations prevented use of all 2048
LST - rest LST cases. Instead, each generation a random selection of 6.
LST - x cases was made, and evaluation conducted against thost
LST -y An independent selection was made at each generation.

When a system is to learn recursive functions, anlne 6-multiplexer runs were terminated at 200
additional choice has to be made: whether the recursiongenerations, and thelnultiplexer at 500 generations, or
are to be evaluated intensionally (ie from further calls toearlier if population evaluation gave a 100% accurate
the defined function) or extensionally (ie from the actualSolution. In the 1-multiplexer case, the population was
values in the data). There are problems with extensiondested only against the 64 cases in the final generation.
evaluation with incomplete datasets, so we chose to us&his might have resulted in the acceptance of populations
intensional evaluation. However this introduces anWhich would not extend accurately to the full 2048 case
additional problem, namely the risk that a recursion maySet: but this does not affect the comparative evaluations
be infinite. Rather than attempt to detect infinite loopsWhich are the focus of this work.

syntactically (in general, an uncomputable problem), we
have chosen a simple semantic expedient: a count is kept
of the depth of recursion, and any deptkager than a
fixed count evaluates as 'loop'. The 'loop' value is treated | PARAMETER SPECIFICATION
much like the 'undefined' value, except that at the top level

Table 4: List Membership GP Parameters

it is treated i t ther choi Id Number of Runs 100
it is treated as an 'incorrect’ answer (0 er choices could =~ o ver Run 500
be made here, but they would lead tofidifities in : !

Population Size 500

comparing partial and total function populations). The
fixed depth was chosen as 15, on the basis that the longest
lists presented as cases have 10 elements, so further

Max depth (initial pop) 8
Max depth (subsequent) | 10

recursion is unlikely to be productive. Tournament size >
Crossover Probability 0.9
The experiments used haHmped initialisation and Mutation Probability 0.1

tournament selection. Parameter settings are given below:0r the list membership problem, the population was
They differ from the experiments reported in earlier €valuated against 20 cases, 10 positive and 10 negative.
papers [3,4] chiefly in running smaller populations for

more generations, as some difficulty had been experienced

in that work in ensuring that the runs actually reached

Table 5: List Membership Cases

IPOSITIVE CASES

INEGATIVE CASES

member(1 [1])

member(1 [6])

member(1 [2 1])

member(1 [3 6])

member(1[2 3 1])

member(1 [2 3 6])

member(1[2 34 1))

member(1[2 3 4 6])

member(1[2345 1)

member(1[2 345 6])

member(1[23456 1))

member(1[234567])

member(1[2345671])

member(1[23 4567 8])

member(1[23456781))

member(1[23456789)])

member(1[234567891)])

member(1[234567892])

member(1[2345678921

member(1[2345678923

Each experiment involved four separate treatments:

raw fitness, popu

fitness sharing, populations of total functions

raw fitness, popu

fitness sharing, populations of partial functions

4. Results

4.1.

Table 6: Percentage of Runs Generating Correct Solution

lations of total functions

lations of partial functions

6-Multiplexer Results .
The percentage of runs which terminated in a correc T 40
voted solution are shown in table 6 and plotted in figure 1:

Total Functions

Partial Functions

Raw Fitness 61

Fitness Sharing | 98

98

100

S0

40F [Partial Shared

= -
z W
£ 60 [—— Total Raw

g —— Total Shared

s —— Partial Raw

&

&

20 -

100 150 200

Generation

Figure 1: % Runs Incomplete, 6 Multiplexer

Figure 2 shows the mean of the depth of the trees used fo
the six multiplexer problem (generations before 30, and
the partial functions with raw fitness run, are omitted from
the plot in order to concentrate on the area of interest).
The trees in the partial functions / shared fitness treatment
are in general considerably smaller up to about generation
150, at which point the 'total shared' and 'partial shared'
plots are based only on the two remaining incomplete
runs, and so may not be reliable indicators.

8

—-— Total Raw
—— Total Shared
oo Partial Shared

Mean depth of trees

100 120 140 160 180 200
Generation

60 80

Figure 2: Mean Depth of Trees, 6 Multiplexer

Table 7: Computational Time, 6 Multiplexer

Raw Fitness Fitness Sharing
Total Partial |Total Partial
cpu/Run 1464.01 |1038.97 |373.49 410.79
Generations/Run |128.06 |198.00 (41.94 61.31
cpu/Generation |11.6 5.27 8.68 6.47

cpu times are in seconds
4.2. 11-Multiplexer Results

The results for the L multiplexer are shown in tables 8
and 9 and plotted in figures 3 and 4:

Table 8: Percentage of Runs Generating Correct Solution

Total Functions Partial Functions

Raw Fitness 11 0

Fitness Sharing | 81 72

Table 10: Percentage of Runs Generating Correct Solution

100 T
o0 | T Total Functions | Partial Functions
sol | Raw Fitness 42 32
© Fitness Sharing | 62 57
i 70+]
§ 60 - .
= 100 .
g S0r 1 A — — total raw
& oo % —— total share |
= 40r ——rotal Raw | %_"-._\1 -— partia.l raw
30 | — Total Shared g sof e L partial share | |
20l | —— Partial Raw 2,
------ Partial Shared E 70f
10 : : : : E
0 100 200 300 400 500 & 60
Generation g
& 50
Figure 3: % Runs Incomplete, 11 Multiplexer 40+
Tree depth results and run-times for tenultiplexer are 30 . . .
shown in table 9 and figure 4 (early generations anc 0 50 100 150 200
'partial raw' run are omitted to concentrate on the area ot Generation
interest).
10 Figure 5: % Runs Incomplete, List Membership
9.5
. 9 Table 11: Computational Time, List Membership
’:; 837 Raw Fitness Fitness Sharing
2 s Total Partial _|Total Partial
= — — Total Raw cpu/Run 2669.03 |2841.90 |1600.10 |1597.01
575 —— Total Shared 8 -
< e Partial Shared Generations/Run [131.89 |147.13 |100.19 |109.22
[1 cpu/Generation |20.53 [1859 [1520 |14.61
65l 1 cpu times are in seconds
S0 100 150 200 250 300 350 400 450 500 10
Generation
Figure 4: Mean Tee Depth, 11 Multiplexer -
=
Table 9: Computational Time, 11 Multiplexer g
g
Raw Fitness Fitness Sharing = R _

Total |Partial |Total |Partial 92l T totaltaw]
cpu/Run 8257.80 |3109.31 |4371.97 |3823.90 —— total share
Generations/Run|485.34 |500.00 |[305.04 |371.21 oL . . .] ~_partial share
cpu/Generation [16.99 6.22 13.93 10.23 40 60 S0 100 120 140 160 180 200

. f Generation
cpu times are in seconds Figure 6: Mean Depth of Trees, List Membership

4.3. List Membership Results

: . . 5. Discussion
The list membership results are shown in tables 10 A4nd 1

d i 5 and 6 The results are quite clear on one point: implicit fitness
andfigures s ando. sharing outperforms raw fitness by large margins in every

experiment. This reinforces the results of [3], but Acknowledgments

demonstrates that the fifences are even larger with The ideas in this paper have benefited greatly from
committee learning than with individual evaluation. In discussions over the years with Paul Darwen, Peter
general, the results on comparison of partial and totaWhigham, Xin Yao, Ko-Hsin Liang, Hussein Abbass, and
functions are more equivocal. It is unsurprising that partialother members of the Machine Intelligence and
functions perform poorly when combined with raw Communication Group at the Australian Defence Force

fitness; the experiments were included for completenesgicademy. The system has been implemented through
rather than because the approach made sense. modifications to Brian Ross’ innovative DCTG-GP

system, which contributed greatly to the rapidity with
On the issue which was the main focus of this work, theVhich a wide range of different algorithms could be
comparison of partial and total functions using fithessPrototyped in the development of this system. My thanks

sharing, there is no strong result: the behaviour afllSO to a number of anonymous reviewers of this research

convergence of the two treatments is very similar. ThiSfor their contributions to details of both the experimental

could be seen as an implicit argument in favour ofworkamdlts exposition.
populations of total functions: if the convergent behaviou
of both is similar, but the greater eagerness of the tot o I .
function search results in lower early fitness, then totall ! Deb, K apd Goldbe_rg, .D E: Ar.] mvest-lgatlon.of. mghel
functions might be preferred. However the timing results and species formation in genetic]‘unctlon optimization
give the lie to this: the partial function timings are very " J D Schaffer (Ed)Proceedlngs of the Third
similar to those for total functions, even though the partial International Confeence on Genetic Algorithms>p
function populations evaluated considerably more 42'50' Morgan Kaufmann, 1989 , .
generations overall. Presumably this arises from reduceﬁz]sm'thj R E, Forrest, S. and PerelsanA S.earchlng .
complexity of the partial functions, as evidenced also by for dllversle, cooperative populatl.ons with genetic
the average depth plots. Thus the greater eagerness of the algorithms', Evolutionary Computation(2), Pp 127-
total function search is offset by the faster per-generation 149, 1992 e . . .
evaluation of the partial function populations, and there is 3] McKay, ,R . I F|tr1ess Sharing in Genetic
little to choose between the two in computation time. Progamming ,Proce.edmgs, G.ECCO. 200_0

[4]McKay, R | 'Partial Functions in Fitness-Shared

This suggests a further issue. The work carried out here Geqetlc Progammmg",Proceedmgs, CE,C 2000 .
has looked simply at performance on noise-free ano[S]Wh'gham: P ,A: Grammatlcally—blas_ed Genetic
complete (or in the case of th&-fnultiplexer problem, Progamming’ in J -Rosca (ec_l)’roceedmgs of the
near-complete) datasets, hence generalisation is not an Wakshop on Gen_etlc Prcugmmmg: From They to
issue. But the primary aim of committee learning Realwald Applications Pp 33-41, Morgan
approaches in particular is to improve generalisation Kaufmann, 1|995. . . .
ability. The smaller depth and faster evaluation of thelo! RO‘Q{S’_ B J: Loglc-baseq Genetic Rengming W'th
partial function populations suggest that they have been Definite Clause Translation GrammarBroceedings
more subject to Occam's razor; in turn, this would suggest GECCO-99 Morgan Kaufmann, 199_9' ,
that they are less likely to be overfitted to the training[7]Abr,amS°n' H and Dahl, \Logic Grammars
data, and may generalise better. The next phase of this SpnngeNerIag,l 1989 . -
work will investigate the relative generalisation ability of (8] Montaﬁa, D J: Strongly Typed Genetic Programming’,
partial and total function populations on both synthetic ~Evolutionary ComputatiarB(2), pp. 199-230, 1995

and real-world datasets.

"
aBeferences

6. Conclusions

The results presented here confirm that committee
learning is well suited to the use of fitness sharing, and far
better results are obtained than with raw fitness. The
results are highly equivocal on the comparison between
populations of partial and of total functions, and do not
give strong grounds for preferring either over the other.

