
Improving Genetic Classifiers with a Boosting Algorithm

 Bo Liu Bob McKay, Hussein A.Abbass
College of Computer and Information School of Computer Science, ADFA,

Engineering, Guangxi University, University of New South Wales,
Nanning, China, 530004 ACT 2600, Australia

 ddxllb@yahoo.com.cn rim@cs.adfa.edu.au , abbass@cs.adfa.edu.au

Abstract : This paper presents a boosting genetic
algorithm for classification rule discovery. The method is
based on the iterative rule learning approach to genetic
classifiers. The boosting mechanism increases the weight
of those training instances that are not classified correctly
by the new rules, so that in the next iteration the algorithm
focuses the search on those rules that capture the
misclassified or uncovered instances. We show that the
boosted genetic classifier has higher accuracy for
prediction, or from an alternative and perhaps more
important perspective, uses less computational resources
for similar accuracy, than the original genetic classifier.

1 Introduction

Classification rule discovery is a process of extracting
models and patterns for each class or category from a set
of training examples, which can be used to classify future
examples. A range of methods have been applied in
classification, including decision tree induction, Bayesian
theory, neural networks, rough set theory, genetic
algorithms (GA) etc. Genetic algorithms are an
optimization approach based on the mechanics of natural
selection and genetics. Several genetic algorithm methods
for data mining have been proposed in the literature [2][1].

Although genetic algorithms form an extremely
powerful optimization technique, their efficacy is
dependent on the ability to do a large number of
evaluations in a reasonable amount of time. When the
database contains a large number of examples with many
features, it may take considerable execution time and
require an enormous amount of memory to find a
satisfactory solution. In addition, genetic algorithms can’t
guarantee to find an optimum solution.

 Boosting is an ensemble learning method, i.e. it
constructs a set of classifiers and then classifies new data
by taking a weighted vote of their predictions. It can
theoretically be used to reduce the error of any weak
learning algorithm, which need only be a little bit better
than random guessing [6]. So far, there has not been much
research on using the boosting technique in evolutionary
learning. To our knowledge, the method has been used to
boost genetic programming in [6] and [7], and to generate
fuzzy rules in [9] and [11].

 In this paper, we apply the boosting algorithm in a GA
classifier. Compared to other learning methods, the
advantage of boosting is its proven ability to improve the
accuracy of a weak learner; in the GA context, it permits
speed-up through reducing the population size and number
of generations. In other words, we can reduce the
computational requirements for a GA to reach a given
level of performance, by weakening the GA and using it
within a boosting algorithm. The rest of the paper is
organized as follow. Section 2 introduces the boosting
algorithm. Section 3 describes the boosting genetic
algorithm for classification. Section 4 presents
experimental results obtained by the boosted GA classifier
and the original GA classifier . Finally, section 5 draws
some conclusions.

2 Boosting Algorithm

The boosting algorithm was proposed and developed by
Freund and Schapire (1995, 1996, 1997, 1998). According
to [10], boosting is a method of finding a highly accurate
hypothesis by combining many “weak” hypotheses, each
of which is only moderately accurate. It manipulates the
training examples to generate multiple hypotheses. In each
iteration, the learning algorithm uses different weights on
the training examples, and it returns a hypothesis ht. The
weighted error of ht is computed and applied to update the
weights on the training examples . The result of the change
in weights is to place more weight on training examples
that were misclassified by ht, and less weight on examples
that were correctly classified. The final classifier is
constructed by weighted vote of the individual classifiers.

Our method is based on the ADABOOST.M1 algorithm
proposed by Freund and Schapire in [3]. ADABOOST
iteratively generates a robust final hypothesis by giving
increased weight to mis-classified training samples from
previous learning rounds. An algorithm is given in Figure
1. Ordinarily, the distribution D will be set to be uniform
initially, so that D(i)=1/N. The algorithm maintains a set of
weights wt over the training examples. On iteration t, a
distribution pt is computed by normalizing these weights.
This distribution is fed to the weak learner, which
generates a hypothesis ht, that assigns one of the k
possible labels to each. The error of ht is computed by ||
ht(xi)≠yi||, where || ht(xi)≠yi|| is 1 if ht(xi)≠yi and 0

This is a self-archived copy of the accepted paper, self-archived under IEEE policy. The authoritative, published version
can be found at {http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1299415&tag=1

otherwise. The final hypothesis hf, for given instances x,
outputs the label y that maximizes the sum of the weights
of the weak hypotheses predicting that label. In AdaBoost,
a key step is choosing a new distribution on the training

examples based on the old distribution and the errors made
by the present weak hypothesis.

 Figure 1 Algorithm AdaBoost.M1

3 Boosting GA for Classification

3.1 GA for Classification Rule Discovery

In our work, we designed the genetic algorithm for
classification rule discovery shown in Figure 2. In the GA
system, each population consists of a number of
genotypes, and each genotype corresponds to a
chromosome, which includes a set of strings. Each string
represents a rule, for example, for Boolean attributes, “If
((not A1) and A2) then C1” can be coded as “011”. More
generally, f an attribute has k values, log2k bits will be
required to code the attribute.

 The GA starts with some random populations of rules,
and thereafter generates successive populations using the
following basic operators: one-point crossover, bit
mutation, and selection according to a fitness function. A
population composed of a set of candidate rules is kept,
and gradually improved by constructing new fitter rules
until stopping criteria are satisfied. Finally, a solution is
selected from the best population, having the maximum
fitness value. The fitness function is defined as equation
(1).

 F=
TP+TN

number of training examples
 (1)

Where
 ·TP is the number of examples covered by the rule that
have the target class.
 ·TN is the number of examples that are not covered by
the rule and that do not have the target class.

3.2 Boosting GA Classifier

The aim of boosting is to take a weak learner and, through
iteration, produce a strong learner. Of course, it would be
computationally wasteful to simply apply boosting to a
computationally expensive, but relatively strong, learner
such as a GA. The aim of this work, then, is to investigate
whether reducing the computational cost of GAs by
reducing their population size and number of generations
(thus producing a weak learner), and combining them with
boosting, represents a useful trade-off. The overall

This is a self-archived copy of the accepted paper, self-archived under IEEE policy. The authoritative, published version
can be found at {http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1299415&tag=1

 Input: sequence of N examples < (x
1
,y

1
),…,(x

N
,y

N
) > with labels

y
i�
Y={1,…, k};

 distribution D over the examples;
 weak learning algorithm WeakLearn;
 number of iterations T.
 Initialize the weight vector: �=D(i) for i=1,…,N.
 Do for t=1,2,…,T
 1.Set

2.Call WeakLearn, providing it with the distribution pt;

 get back a hypothesis h
t
: X→Y.

 3.Calculate the error of h
t
: є

t
=�

 If є
t
>1/2, then set T=t-1 and abort loop.

 4.Set β
t
= є

t
/(1- є

t
).

 5.Set the new weights vector to be

 Output the hypothesis

h
f
(x)=arg

procedure of the boosting GA classifier is depicted in
figure 3.

The boosting genetic algorithm is detailed in Figure 4.
The function of boosting is to repeatedly apply a weak
learning algorithm on various distributions of the training
data and to aggregate the individual classifiers into a

single overall classifier. Initially, all training examples are
uniformly weighted. After each iteration, the distribution
of training examples is changed, based on the error that the
current classifier exhibits on the training set. The weight
w(i) specifies the relative importance of the i-th training
example

 For each target-class
 Generate initial populations of rule conditions at random

Repeat
Evaluate each population on the training set using a fitness function

 Applying genetic operators to generate new populations，such as
 Select the best in population Pi to Pj ;
 Crossover Pi individuals with Pj individuals;
 Mutation Pi

Until number of generations
Generate rule set from the best population
End for

Figure 2 GA for Classification Rule Discovery

 evaluate fitness

 classification rules
 update weight

 classifier with different factor

 classify

Figure 3 Procedure of Boosting GA Classifier

The fitness function in GA(S, Dt) in Figure 4 is
different from that depicted in equation (1). The fitness
function considers the distribution of each training
example, as defined in equation (2).

 F=
∑k∈TPSet

Dt (k)+∑k∈TNSet
Dt (k)

∑k∈S Dt (k)

(2)
Where

·S is training set;
·TPSet includes instances covered by the rule that have

target class;
·TNSet includes instances that are not covered by the

rule and that do not have the target class.

4 Experiment Results

 We conducted experiments on two data sets from the UCI
repository [5]. One is the Wisconsin breast cancer
database, which contains 699 instances, 9 integer-valued
attributes and 2 classes (malignant and benign). Instances
containing missing values were omitted from the
experiment. The other is the Tic_tac_toe endgame
database, which contains 958 instances, 9 numeric-valued
attributes and 2 classes (won and lost). These learning
problems have been widely studied, and a number of
algorithms have achieved high performance on them –
higher than the results reported in this paper. However the
aim of this paper is to understand the effects of combining
GAs with boosting, rather than to achieve optimality on
these particular datasets, on the basis that the relative

This is a self-archived copy of the accepted paper, self-archived under IEEE policy. The authoritative, published version
can be found at {http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1299415&tag=1

 Classifier aggregation

 Genetic Algorithm Training examples

 Testing examples

Boosting Algorithm

performance would be expected to extend to more difficult
problems on which GAs relatively well.

In the experiments, each database is divided into 10
mutually exclusive and exhaustive partitions. In each
experiment, a different partition is used as the test set and
the other nine partitions are used as the training set (i.e.
10-fold cross-validation)..

The evolutionary parameter settings used in the
experiment are listed in Table 1.

We use a training set to generate some rule sets, then
predict the class of instances in an independent test set.

Supposing Num_C is the total number of instances
correctly classified and Num_UC is the total number of
instances incorrectly classified, the accuracy is computed
by means of the following formula:

 Accuracy =
NumC

NumC+NumUC
 (3)

 The average accuracy, on the test sets, is reported as
the prediction accuracy of the discovered rule set. The
results comparing the mean accuracy of GA and BoostGA
are shown in Table 2.

Figure 4 The GABoost Algorithm for Classification

 Table 1 GA and BoostGA Parameter Settings

 Parameter GA BoostGA
 Rounds of boosting 1 3
 Number of generations 20 5
 Population size 1000 500
 Crossover rate 0.8 0.8
 Mutation rate 0.1 0.1
 Copy rate 0.1 0.1
Number of rules(for each class) 10 10

 Table 2 Mean Prediction Accuracy of GA and BoostGA

 Accuracy Evaluations
 Data set GA BoostGA GA BoostGA

This is a self-archived copy of the accepted paper, self-archived under IEEE policy. The authoritative, published version
can be found at {http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1299415&tag=1

Input: a training set S={(x1, y1), (x2, y2),…, (xm, ym)}; xi ¿ X,
 yi ¿ Y={1, 2, …k};
 GA(S,D) : a GA algorithm for classification using a
 distribution D on S;
 T : rounds of boosting
Initialize the weight of instance (xi, yi): w1(i)=1/m for i=1 ,…, m.
For t=1, 2, …, T

 Dt(i)=
wt (i)

∑i=1

m
wt (i)

Run GA(S,Dt)
Get a set of rules denoted as Rt: X→Y.

Calculate the error of Rt : є(Rt)= ∑i=1

m
Di(t)∥Rt (xi)≠ yi∥

If є(Rt) >1/2 and k>2 then T=t-1 and abort loop
Else
 Set β(t)=є(Rt) / (1-є(Rt))
 Update the weight of each instance to be

 wt+1(i)=wt(i)* β(t)1- ∥Rt(xi)≠ yi∥
End if

End for
Output the class of instance xk

 Rf(xk)=arg max
y∈Y

∑
t=1

T

log(1/ β (t))∗∥Rt(xk)= y∥

 Breast Cancer 93.28% 95.18% 20,000 7,500
 Tic-tac-toe 73.13% 86.75% 20,000 7,500

The table shows that BoostGA generates a higher
classification accuracy than GA. We also conducted one-
tailed student’s t-tests for ten group experiment results.
The significance level is 0.04 for the Breast Cancer
Database and 0.004 for the Tic-tac-toe. The difference of
the two methods is statistically significant in both cases.

 We can also compare computational requirements of
the two methods. This is best measured by comparing the
number of fitness evaluations required, since measurement
of actual computational times can be dependent on
external variables. The comparison is given in table 2. The
measure is calculated by equation (4).

Evaluations = Rounds of boosting
¿ Number of generations

¿ Population size (4)

Table 3 Mean Classification Accuracy of GA Classifiers in Boosting

 Accuracy (best fitness)
Rounds of boosting Breast cancer Tic-tac-toe
 1 0.7233 0.6904
 2 0.7566 0.6615
 3 0.7748 0.6990

In BoostGA, we use boosting rounds to compensate for
reducing the generations and populations in the GA. The
result is that fewer than half the fitness evaluations (7,500
vs 20,000) are required to produce significantly better
results.

Table 3 shows the best fitness in each round of
boosting. It can be observed that the “weak” GA learner
results in a rule set which has moderate accuracy (just
greater than 0.6) in the boosting procedure, conforming to
the requirement of the boosting algorithm.

Figure 5 shows an interesting phenomenon in choosing
BoostGA parameters,

(a) for the Wisconsin breast cancer data set and
(b) for the Tic_tac_toe data set.

To explore the effects of different versions of the weak
learner, we adjusted the number of generations (the other
parameters are as set in Table 1), obtaining the
corresponding accuracies. As the number of generations
increases, although the best fitness of every generation is
higher than in table 3, the correct prediction rate of the
ensemble classifier is not increased.

BoostGA experimental results from varying the
boosting rounds from 1 to 10 (leaving the other parameters
as in Table 1) are depicted in figure 6, and results varying
the population size from 100 to 1000 (leaving the other

parameters as in Table 1) are depicted in figure 7. We can
conclude that it doesn’t require many boosting rounds to
obtain a significantly better accuracy, and that increasing
the population size above those from Table 1 does not
usefully affect the accuracy.

5 Conclusion
 In the paper we applied boosting to genetic algorithms for
rule discovery. It raises interesting issues not only in
classification, but also in genetic algorithms. The method
has been tested on publicly available databases. We
compare the boosted algorithm with the original genetic
algorithm used in rule discovery. Experimental results
have demonstrated that the boosted genetic algorithm is
able to classify the test set with higher accuracy and fewer
fitness evaluations than the original genetic algorithm.

The proposed algorithm can also be used as a
distributed classification technique for efficiently
integrating specialized classifiers learned over distributed
homogenous databases that cannot be merged at a single
location.

Future work will include the application of the
proposed algorithm to real-world databases, and the
application of boosting to parallel evolutionary system.

This is a self-archived copy of the accepted paper, self-archived under IEEE policy. The authoritative, published version
can be found at {http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1299415&tag=1

70

80

90

100

5 10 15 20 25 30 35 40 45 50

number of generations

correct rate (%)
70

80

90

100

5 10 15 20 25 30 35 40 45 50

number of generations

correct rate (%)(

(a) (b)

Figure 5 Test Set Accuracy (%) versus Different Number of Generations in BoostGA

70

80

90

100

1 2 3 4 5 6 7 8 9 10

 rounds of boosting

correct rate(%)

(a) (b)

 Figure 6 Test Set Accuracy(%) versus Number of Rounds in BoostGA

70

80

90

100

100 200 300 400 500 600 700 800 900 1000

population size

correct rate(%)

(a)

This is a self-archived copy of the accepted paper, self-archived under IEEE policy. The authoritative, published version
can be found at {http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1299415&tag=1

70

80

90

100

1 2 3 4 5 6 7 8 9 10

 rounds of boosting

correct rate(%)

70

80

90

100

100 200 300 400 500 600 700 800 900 1000

population size

correct rate(%)

(b)

Figure 7 Test Set Accuracy (%) versus Population Sizes in BoostGA

Bibliography
1. J.L.Álvarez, J.Mata, J.C.Riquelme, Mining Interesting

Regions Using an Evolutionary Algorithm,
Proceedings of the 17th Symposium on Applied
Computing , (2002) 498-502

2. Siddhartha Bhattacharyya, Evolutionary Algorithms in
Data Mining:Multi-Objective Performance Modeling for
Direct Marketing, Proceedings of the sixth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, (2000) 465-473

3. Yoav Freund, Robert E.Schapire, A Decision-theoretic
Generalization of On-line Learning and an Application
to Boosting, Tech.rep., AT&T Bell Laboratories, Murray
Hill, NJ, (1995)

4. Yoav Freund, Robert E.Schapire, Experiments with a
New Boosting Algorithm, Proceeding of 13th

international Conference on Machine Learning, (1996)
148-156

5. Hettich, S. and Bay, S.D., The UCI KDD
Archive, http://kdd.ics.uci.edu. (1999)

6. Hitoshi Iba, Bagging, Boosting, and Bloating in Genetic
Programming, Proceedings of the Genetic and

Evolutionary Computation Conference, volume 2,
(1999) 1053-1060

7. Gregory Paris, Denis Robilliard, and Cyril Fonlupt:
App ly ing Boos t i ng Techn iques t o Gene t i c
Programming, Proceeding of the 6th Intelligent Artificial
Evolution, (2001) 315-326.

8. Robert E.Schapire, Using Output Codes to Boost
Multiclass Learning Problems, Proceedings of the
Fourteenth International Conference on Machine
Learning, (1997) 313-321

9. L.Junco, L.Sanchez, Using the Adaboost Algorithm to
Induce Fuzzy Rules in Classification Problems,
Proceeding of Spanish Conference for Fuzzy Logic and
Technologies, (2000) 297-301

10. Robert E.Schapire, Yoram Singer: Improved
Boosting Algorithms Using Confidence-rated
Predictions, Proceedings of the 11th Annual
Conference on Computational Learning Theory,
(1998) 80-91

Frank Hoffmann, Boosting a Genetic Classifier,
IFSA/NAFIPS, (2001)

This is a self-archived copy of the accepted paper, self-archived under IEEE policy. The authoritative, published version
can be found at {http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1299415&tag=1

