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Abstract : This paper presents a boosting genetic 
algorithm for  classification rule discovery. The method is 
based on the iterative rule learning approach to genetic 
classifiers. The boosting mechanism increases the weight 
of those training instances that are not classified correctly 
by the new rules, so that in the next iteration the algorithm 
focuses the search on those rules that capture the 
misclassified or uncovered instances. We show that the 
boosted genetic classifier has higher accuracy for 
prediction, or from an alternative and perhaps more 
important perspective, uses less  computational resources 
for similar accuracy, than the original genetic classifier.

1 Introduction

Classification rule discovery is a process of extracting 
models and patterns for each class or category from a set 
of training examples, which can be used to classify future 
examples. A range of methods have been applied in 
classification, including decision tree induction, Bayesian 
theory, neural networks, rough set theory, genetic 
algorithms (GA) etc.  Genetic algorithms are an 
optimization approach based on the mechanics of natural 
selection and genetics. Several genetic algorithm methods 
for data mining have been proposed in the literature [2][1].

Although genetic algorithms form an extremely 
powerful optimization technique, their efficacy is 
dependent on the ability to do a large number of 
evaluations in a reasonable amount of time. When the 
database contains a large number of examples with many 
features, it may take considerable execution time and 
require an enormous amount of memory to find a 
satisfactory solution. In addition, genetic algorithms can’t 
guarantee to find an optimum solution.

 Boosting is an ensemble learning method, i.e. it 
constructs a set of classifiers and then classifies new data 
by taking a weighted vote of their predictions. It can 
theoretically be used to reduce the error of any weak 
learning algorithm, which need only be a little bit better 
than random guessing [6]. So far, there has not been much 
research on using the boosting technique in evolutionary 
learning. To our knowledge, the method has been used to 
boost genetic programming in [6] and [7], and to generate 
fuzzy rules in [9] and [11].

 In this paper, we apply the boosting algorithm in a GA 
classifier. Compared to other learning methods, the 
advantage of boosting is its proven ability to improve the 
accuracy of a weak learner; in the GA context, it permits 
speed-up through reducing the population size and number 
of generations. In other words, we can reduce the 
computational requirements for a GA to reach a given 
level of performance, by weakening the GA and using it 
within a boosting algorithm. The rest of the paper is 
organized as follow. Section 2 introduces the boosting 
algorithm. Section 3 describes the boosting genetic 
algorithm for classification. Section 4 presents 
experimental results obtained by the boosted GA classifier 
and the original GA classifier . Finally, section 5 draws 
some conclusions.

2 Boosting Algorithm

The boosting algorithm was proposed and developed by 
Freund and Schapire (1995, 1996, 1997, 1998). According 
to [10], boosting is a method of finding a highly accurate 
hypothesis by combining many “weak” hypotheses, each 
of which is only moderately accurate. It manipulates the 
training examples to generate multiple hypotheses. In each 
iteration, the learning algorithm uses different weights on 
the training examples, and it returns a hypothesis ht. The 
weighted error of ht is computed and applied to update the 
weights on the training examples . The result of the change 
in weights is to place more weight on training examples 
that were misclassified by ht, and less weight on examples 
that were correctly classified. The final classifier is 
constructed by weighted vote of the individual classifiers.

Our method is based on the ADABOOST.M1 algorithm 
proposed by Freund and Schapire in [3]. ADABOOST 
iteratively generates a robust final hypothesis by giving 
increased weight to mis-classified training samples from 
previous learning rounds. An algorithm is given in Figure 
1. Ordinarily, the distribution D will be set to be uniform 
initially, so that D(i)=1/N. The algorithm maintains a set of 
weights wt over the training examples. On iteration t, a 
distribution pt is computed by normalizing these weights. 
This distribution is fed to the weak learner, which 
generates a  hypothesis ht, that assigns one of the k 
possible labels to each.  The error of ht is computed   by  ||
ht(xi)≠yi||, where || ht(xi)≠yi|| is 1 if  ht(xi)≠yi  and 0 
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otherwise. The final hypothesis hf, for given instances x, 
outputs the label y that maximizes the sum of the weights 
of the weak hypotheses predicting that label. In AdaBoost, 
a key step is choosing a new distribution on the training 

examples based on the old distribution and the errors made 
by the present weak hypothesis.

                                                         Figure 1 Algorithm AdaBoost.M1 

3 Boosting GA for Classification

3.1 GA for Classification Rule Discovery

In our work, we designed the genetic algorithm for 
classification rule discovery shown in Figure 2. In the GA 
system, each population consists of a number of 
genotypes, and each genotype corresponds to a 
chromosome, which includes a set of strings. Each string 
represents a rule, for example, for Boolean attributes,  “If 
((not A1) and A2) then C1” can be coded as “011”. More 
generally, f an attribute has k values, log2k bits will be 
required to code the attribute.

 The GA starts with some random populations of rules, 
and thereafter generates successive populations using the 
following basic operators: one-point crossover, bit 
mutation, and selection according to a fitness function.  A 
population composed of a set of candidate rules is kept, 
and gradually improved by constructing new fitter rules 
until stopping criteria are satisfied. Finally, a solution is 
selected from the best population, having the maximum 
fitness value. The fitness function is defined as equation 
(1). 

 

   F=
TP+TN

number of training examples
         (1)

Where
       ·TP is the number of examples covered by the rule that 
have the target class.
       ·TN is the number of examples that are not covered by 
the rule and that do not have the target class.

3.2 Boosting GA Classifier

The aim of boosting is to take a weak learner and, through 
iteration, produce a strong learner. Of course, it would be 
computationally wasteful to simply apply boosting to a 
computationally expensive, but relatively strong, learner 
such as a GA. The aim of this work, then, is to investigate 
whether reducing the computational cost of GAs by 
reducing their population size and number of generations 
(thus producing a weak learner), and combining them with 
boosting, represents a useful trade-off. The overall 
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procedure of the boosting GA classifier is depicted in 
figure 3.

The boosting genetic algorithm is detailed  in Figure 4. 
The function of boosting is to repeatedly apply a weak 
learning algorithm on various distributions of the training 
data and to aggregate the individual classifiers into a 

single overall classifier. Initially, all training examples are 
uniformly weighted. After each iteration, the distribution 
of training examples is changed, based on the error that the 
current classifier exhibits on the training set. The weight 
w(i) specifies the relative importance of the i-th training 
example

                                    For each target-class
                                           Generate initial populations of rule conditions at random

Repeat
Evaluate each population on the training set using a fitness function

                                           Applying genetic operators to generate new populations，such as                               
                                              Select the best in population Pi  to Pj ;
                                                                     Crossover Pi individuals with Pj individuals;
                                             Mutation Pi 

Until number of generations  
Generate  rule set from the best population  
End for

Figure 2  GA for Classification Rule Discovery

                                                                                                                                        
                                                                       evaluate fitness                                                                    
                                                                                                                                                                                       

                                                                                                                             
                                                 classification rules                                                                                                     
                                                                                              update weight                                                                                                                                                

                                                                                                     
                                                                                                                                    
                                                 classifier with different factor

                                                                                      classify
                                                        
                           
                               

Figure 3 Procedure of  Boosting GA Classifier

The fitness function in GA(S, Dt) in Figure 4 is 
different from that depicted in equation (1). The fitness 
function considers the distribution of each training 
example, as defined in equation (2).

      F=
∑k∈TPSet

Dt (k )+∑k∈TNSet
Dt (k )

∑k∈S Dt ( k )
               

(2)     
Where

·S is training set;
·TPSet includes instances covered by the rule that have 

target class;
·TNSet includes instances that are not covered by the 

rule and that do not have the target class.

4 Experiment Results

 We conducted experiments on two data sets from the UCI 
repository [5]. One is the Wisconsin breast cancer 
database, which contains 699 instances, 9 integer-valued 
attributes and 2 classes (malignant and benign). Instances 
containing missing values were omitted from the 
experiment. The other is the Tic_tac_toe endgame 
database, which contains 958 instances, 9 numeric-valued 
attributes and 2 classes (won and lost). These learning 
problems have been widely studied, and a number of 
algorithms have achieved high performance on them – 
higher than the results reported in this paper. However the 
aim of this paper is to understand the effects of combining 
GAs with boosting, rather than to achieve optimality on 
these particular datasets, on the basis that the relative 
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performance would be expected to extend to more difficult 
problems on which GAs relatively well.

In the experiments, each database is divided into 10 
mutually exclusive and exhaustive partitions. In each 
experiment, a different partition is used as the test set and 
the other nine partitions are used as the training set (i.e. 
10-fold cross-validation)..

The evolutionary parameter settings used in the 
experiment are listed in Table 1.

We use a training set to generate some rule sets, then 
predict the class of instances in an independent test set. 

Supposing Num_C is the total number of instances 
correctly classified and Num_UC is the total number of 
instances incorrectly classified, the accuracy is computed 
by means of the following formula:

      Accuracy =
NumC

NumC+NumUC
              (3)

  The average accuracy, on the test sets, is reported as 
the prediction accuracy of the discovered rule set. The 
results comparing the mean accuracy of GA and BoostGA 
are shown in Table 2. 

Figure 4  The GABoost Algorithm for Classification

                              Table 1 GA and BoostGA Parameter Settings

        Parameter            GA  BoostGA
   Rounds of boosting            1           3
   Number of generations            20           5
   Population size           1000           500
   Crossover rate            0.8           0.8
   Mutation rate            0.1           0.1
   Copy rate            0.1           0.1
Number of rules(for each class)            10           10  

 
 Table 2 Mean Prediction Accuracy of GA and BoostGA 

            Accuracy Evaluations
   Data     set      GA BoostGA      GA BoostGA
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Input: a training set S={(x1, y1), (x2, y2),…, (xm, ym)};  xi ¿ X,     
            yi ¿ Y={1, 2, …k};
             GA(S,D) : a GA algorithm for classification using a     
                              distribution D on S;
             T : rounds of boosting
Initialize the weight of instance (xi, yi): w1(i)=1/m for i=1 ,…, m.
For t=1, 2, …, T

    Dt(i)=
wt ( i )

∑i=1

m
wt (i )

Run GA(S,Dt)
Get a set of rules denoted as Rt: X→Y.

Calculate the error of Rt : є(Rt )= ∑i=1

m
Di( t )∥Rt ( xi )≠ yi∥

If  є(Rt ) >1/2 and k>2  then T=t-1 and abort loop
Else
   Set β(t)=є(Rt) / (1-є(Rt ))
   Update the weight of each instance to be

             wt+1(i)=wt(i)* β(t)1- ∥Rt( xi )≠ yi∥
End if

End for
Output the class of  instance xk

       Rf(xk)=arg max
y∈Y

∑
t=1

T

log(1/ β ( t ))∗∥Rt( xk )= y∥



  Breast  Cancer      93.28% 95.18%     20,000   7,500
     Tic-tac-toe      73.13% 86.75%     20,000   7,500

The table shows that BoostGA generates a higher 
classification accuracy than GA. We also conducted one-
tailed student’s t-tests for ten group experiment results. 
The significance level is 0.04 for the Breast Cancer 
Database and 0.004 for the Tic-tac-toe. The difference of 
the two methods is statistically significant in both cases.

 We can also compare computational requirements of 
the two methods. This is best measured by comparing the 
number of fitness evaluations required, since measurement 
of actual computational times can be dependent on 
external variables. The comparison is given in table 2. The 
measure is calculated by equation (4).

Evaluations = Rounds of boosting
¿ Number of generations

¿ Population size (4)

                              
Table 3 Mean Classification Accuracy of GA Classifiers in Boosting 

               Accuracy (best fitness)
Rounds of boosting    Breast cancer           Tic-tac-toe
              1        0.7233               0.6904
              2        0.7566               0.6615
              3        0.7748               0.6990

In BoostGA, we use boosting rounds to compensate for 
reducing the generations and populations in the GA. The 
result is that fewer than half the fitness evaluations (7,500 
vs 20,000) are required to produce significantly better 
results.

Table 3 shows the best fitness in each  round of 
boosting. It can be observed that the “weak” GA learner 
results in a rule set which has moderate accuracy (just 
greater than 0.6 ) in the boosting procedure, conforming to 
the requirement of the boosting algorithm.

Figure 5 shows an interesting phenomenon in choosing 
BoostGA parameters,

(a) for the Wisconsin breast cancer data set and 
(b) for the Tic_tac_toe data set. 

To explore the effects of different versions of the weak 
learner, we adjusted the number of generations (the other 
parameters are as set in Table 1), obtaining the 
corresponding accuracies. As the number of generations 
increases, although the best fitness of every generation is 
higher than in table 3, the correct prediction rate of the 
ensemble classifier is not increased.

BoostGA experimental results from varying the 
boosting rounds from 1 to 10 (leaving the other parameters 
as in Table 1) are depicted in figure 6, and results varying 
the population  size from 100 to 1000 (leaving the other 

parameters as in Table 1) are depicted in  figure 7.  We can 
conclude that it doesn’t require many boosting rounds to 
obtain a significantly better accuracy, and that increasing 
the population size above those from Table 1 does not 
usefully affect the accuracy. 

5 Conclusion
 In the paper we applied boosting to genetic algorithms for 
rule discovery. It raises interesting issues not only in 
classification, but also in genetic algorithms. The method 
has been tested on publicly available databases. We 
compare the boosted algorithm with the original genetic 
algorithm used in rule discovery. Experimental results 
have demonstrated that the boosted genetic algorithm is 
able to classify the test set with higher accuracy and fewer 
fitness evaluations than the original genetic algorithm.

The proposed algorithm can also be used as a 
distributed classification technique for efficiently 
integrating specialized classifiers learned over distributed 
homogenous databases that cannot be merged at a single 
location.

Future work will include the application of the 
proposed algorithm to real-world databases, and the 
application of boosting to parallel evolutionary system.
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Figure 5   Test Set Accuracy (%)  versus Different Number of   Generations   in  BoostGA
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     Figure 6   Test Set Accuracy(%)  versus Number of   Rounds   in  BoostGA
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Figure 7   Test Set Accuracy (%)  versus   Population Sizes  in  BoostGA
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