
1

Simulating Chemical Evolution
In Soo Oh Computer Science and Engineering

Seoul National University, Korea
Email: erdos.cs@gmail.com Yun-Geun Lee Computer Science and Engineering

Seoul National University, Korea
Email: ey9ey9@gmail.com RI (Bob) McKay Computer Science and Engineering

Seoul National University, Korea
Email: rimsnucse@gmail.com

Abstract—Chemical methods such as directed evolution and
some forms of the SELEX procedure implement evolutionary al-
gorithms directly in vitro. They have a wide range of applications
in detecting and targeting diseases and potential applications in
other areas as well [1].

However it is relatively difficult and expensive to carry out
these processes (by comparison with evolutionary computation),
so that the underlying theory has seen limited development. For
more complex problems, where multiple and dynamic objectives
are involved, there is potential for substantial improvement in the
search protocols. Simulation through the methods of evolutionary
computation is one potential way to gain the necessary insights.

The complex fitness functions and huge populations involved
in combinatorial chemistry render detailed simulation infeasible.
However detailed simulation is not needed, so long as simulations
are sufficiently similar to yield qualitative insights. In this paper,
we investigate whether one class of problems – those involving
short-chain evolution, where stereochemical effects do not dom-
inate – are likely to have sufficiently similar fitness landscapes
to a simple problem, string matching, for useful inferences to be
made. In the outcome, it appears that the differences between
more detailed simulations and string matching are not sufficient
to significantly alter the behaviour of evolutionary algorithms,
so that string matching could be used as a realistic surrogate.
This is valuable, because string matching can be implemented in
GPUs, offering speed-ups to the level where populations of 107,
or even 108, might be feasible, thus reducing the population gap
between chemical and computer evolution.

Index Terms—SELEX, Directed Evolution, NK Model, Genetic
Algorithm.

I. INTRODUCTION

DNA-based combinatorial chemistry is rapidly developing
as an important source of active organic molecules, especially
in medicine, with drugs already on the market [2], and others
on the way. The two major variants, Systematic Evolution
of Ligands by Exponential Enrichment (SELEX [3]) and
directed evolution [4], use large populations of randomised
DNA molecules as genotype, with automated selection of
more useful molecules (usually, based on binding energy to
a target protein). In the former, the phenotype, also known
as an aptamer, is the DNA itself, or more commonly, the
transcribed RNA; in the latter, the phenotype is usually the
resulting translated peptide or protein. In the early days of

This is a self-archived copy of the accepted paper, self-archived un-
der IEEE policy. The authoritative, published version can be found at
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5949958&tag=1

SELEX, aptamers were generally short – generally less than 25
bases – so that typical experimental sample sizes of up to 1015

molecules could be expected to contain most of the 425 ≈ 1015

possible combinations. In this case, chemical processes only
needed to amplify and purify the desired molecules.

In protein synthesis, 25 bases can only generate peptide
chains up to length 8, too short to be useful. So right
from the start, variation operators (generally mutation, but
often combined with some form of recombination) were used.
Today, longer aptamers are often sought, so that some form
of mutation is often combined into SELEX protocols as
well. In these applications, chemists are in effect performing
evolutionary computation (albeit with vastly larger populations
than usual) in test tubes.

It has taken a long time, and many millions of experiments,
to reach a reasonable understanding of the performance of evo-
lutionary algorithms. Combinatorial chemists don’t have this
luxury. Each trial is expensive, both in human and equipment
time, and in materials. In the early days, the work focused on
simple optimisation, so this may not have mattered unduly.
Today, there may be multiple conflicting or time varying
objectives in a co-evolutionary context. Moreover combina-
torial chemists suffer additional algorithmic complications –
rank-based methods are unavailable, mutation and crossover
operators may be biased in unknown ways, and so on.

Our aim in this program of work is to simulate this chemical
evolution to the extent that we feasibly can – qualitatively,
certainly not quantitatively – in the hope that this can help
to elucidate the constraints on the performance of chemical
evolution, and provide some guidance as to how to generate
effective evolutionary protocols. This paper is a first step in
determining suitable simulations.

In section II, we provide more detail of the motivation
of this work, following it in section III with background on
the relationship between chemical evolution and evolutionary
computation. Section IV details the energy models we used,
section V details the experiments, and section VI provides
the results. Analysis follows in section VII, and we conclude
the paper with a summary, discussion of assumptions and
limitations, and proposals for future work.

II. MOTIVATION

Why is simulation of chemical evolution needed? After
all, if evolutionary optimisation is by now relatively well-

2

understood, can we not just directly apply its principles to
chemical evolution (modulo some adaptation for the different
scale of chemical evolution)?

There are two main reasons why it is not so simple:
• Chemical evolution is subject to restrictions that don’t ap-

ply in evolutionary computation, and new understanding
may be necessary for these.

• Chemical evolution is moving beyond static optimisation
of a single objective into areas that are still under active
investigation in evolutionary computation.

For the former, we note that rank-based selection (e.g.
tournament selection) is infeasible to implement; the selection
is inherently probabilistic, but has a sigmoid profile differing
from both the linear profile of roulette selection, and the step
profile of truncation selection. Even more important, mutation
is inherently biased. Even getting a reasonably even probability
of generating each of the four bases through mutation requires
the combination of multiple polymerases under carefully con-
trolled conditions. But this does not remove probabilistic
dependency on the base which is being substituted, much less
on its neighbours. It is simply not known, at present, what
effect these biases may have on evolution.

One of the major targets of SELEX and directed evolution
is pharmaceuticals. One approach targets proteins of disease
vectors such as HIV. Thus the aim is to transport toxins into
cells, in inactivated form, bound to an evolved aptamer or
peptide which is able to recognise an HIV protein; when
the HIV protein is bound, the toxin is released and the cell
killed. However this requires not only high affinity for the HIV
target, but also high selectivity for it. Even in the severely ill,
HIV-infected cells are sufficiently rare that positive:negative
binding ratios as high as 106 would probably kill the patient
before the infection. It is well-known that these two objectives
– affinity and selectivity – are likely to be in conflict [5],
raising all the complex issues of multi-objective optimisation.

Equally important, in personalised medicine, molecules are
evolved to match diseases of specific patient. In some cases
(HIV, tumours‘[6]), the target is itself evolving rapidly under
the influence of the selective pressure of the treatment, leading
to issues of dynamic optimisation and co-evolution.

All these considerations imply that there is a need for
better understanding of the behaviour of algorithms implicitly
used in chemical evolution. In some cases (multi-objective
or dynamic optimisation, for example) better protocols might
result. In others (biased mutation), it would be useful to know
whether there would be major benefit from research efforts to
reduce the bias: perhaps the bias has little effect on search
effectiveness. The cost of each experiment makes it unlikely
that sufficient studies to gain this understanding could ever be
performed in chemistry. Thus qualitative simulation of these
algorithms is the best solution we are likely to get.

III. BACKGROUND

A. SELEX and Directed Evolution as Evolutionary Algorithms

In the simplest form of SELEX, where the aim is to find
a DNA molecule with high binding affinity for a specific
protein, the process itself is conceptually simple. In one form,

the target protein is bonded to a surface, then washed with
the initial population at a suitable temperature, so that only
the more strongly-binding DNA molecules are bound. The
remainder of the solution is washed away, then the bound
DNA is amplified through polymerase chain reaction (PCR).
The cycle is repeated a number of times – generally in the low
tens with the reaction temperature being gradually increased
(increasing the binding energy required for selection).

More typical forms of SELEX search for RNA, so that
steps of transcription and reverse transcription have to be
interleaved into the process. Directed evolution creates even
greater complications, requiring RNA-protein translation in
the forward direction. Since reverse translation is impractical,
complex protocols are needed to ensure that the protein prod-
uct’s binding energy can be used to select the corresponding
DNA for the next round of amplification. Further detail on
how this is accomplished may be found in [7].

Evolutionary search, rather than simple concentration of an
already-present molecule, uses error-prone PCR, in which the
normally high-fidelity PCR (error rates as low as 4 ∗ 10−7

mutations per base per cycle) are deliberately disrupted by
chemical and other manipulation, as high as 10−2 [8]. In
directed evolution, this may be combined with gene shuffling
to induce recombinations between DNA strands.

Noisy SELEX, and directed evolution, thus really do per-
form evolutionary search in a search space of possible genetic
combinations, using binding energy to define the fitness land-
scape. They differ most obviously from typical evolutionary
algorithms in their relatively short runs, and in the huge
populations used (typically 109 up to 1015).

B. Simulating Chemical Evolution

If we are to simulate these processes, there are two obvious
difficulties:

• We cannot hope to simulate specific RNA-protein or
protein-protein binding energies accurately (even simu-
lating the 3-D conformation of the protein binding target
is known to be NP-Hard [9],).

• Even if we could solve this, we have no realistic pos-
sibility of simulating populations of 1015, because of
both space and time limits. Even populations of 109 are
probably beyond the limits of current technology.

Fortunately, we don’t need to solve these. Our aim is not
to simulate specific runs of chemical evolution, but rather to
gain a qualitative understanding. For the first difficulty, what
we need is to find fitness landscapes reasonably analogous to
binding energy, which we can use for our studies. For the latter,
we have little alternative but to undertake scaling studies, and
hope to extrapolate our results into the region of interest.

But what are reasonable analogues for RNA-protein and
protein-protein binding? Since the target is fixed there is,
in fact, a highest-binding-energy phenotype, we just have to
find it. At one extreme, we may treat the problem as one of
string matching: matching the evolved phenotype location-by-
location with this fittest phenotype. String matching has many
advantages as a test problem, the most notable being that it is
readily implemented in a GPU, and thus we might realistically

3

be able to simulate quite large populations, perhaps close to
the lower bound of real chemical evolution.

But string matching is also a gross over-simplification. In
fact, there is epistasis between genes. Naturally, there are local
interactions – substituting a single base is likely to disturb
not only its own binding, but that of its neighbours. But
there are also longer-distance effects, because a substitution
in one location of a molecule may change the molecule’s
overall shape, and thus may change which bases are available
for binding to the target. This led Kauffman [10] to argue
that protein binding was an example of his famous N − k
fitness landscape, in which each of N bases interacts with a
randomly selected subset of k other bases. Unfortunately N−k
evaluation is quite expensive, and not readily implemented on
GPUs, so that it is unlikely that we would be able to scale
simulations up to anything approaching the same size as for
string matching. It is also likely that the random nature of the
epistasis is unrealistically complex for some protein-protein
binding, and especially so for RNA-protein binding, where
there is chemical evidence that in at least some systems, most
interactions are local [11].

The true fitness landscape is likely to lie between these
extremes, in some cases closer to the string-matching end; in
others, closer to N −k fitness landscapes. At the simpler end,
though, string-matching will always be an over-simplification
– there will always be at least local energy interaction effects.
Our question, in this paper, is do local interactions matter? Do
they affect the fitness landscape enough to make a substantial
difference to the conclusions we reach? This is important,
because while pure string-matching will be relatively easy to
implement in a fast GPU algorithm, even local interactions
would greatly complicate the coding, so that our simulation
scales would be reduced by up to an order of magnitude.

C. Previous Simulation of Chemical Evolution

Computer and mathematical simulation of non-mutational
SELEX has a long tradition, and indeed non-mutational
SELEX may now be considered well-understood. Corne et
al. [12] appear to be the only researchers to previously simulate
directed evolution; their focus was on the effects of mutation
and selection pressure, and led to new insights into appropriate
parameter setting in directed evolution.

IV. BINDING ENERGY MODEL

In chemical evolution, the binding energy between phe-
notype and target generally determines the fitness (to be
precise, binding affinity depends both on binding energy and
on entropy, but with the relatively simple phenotypes used
in directed evolution, energy generally dominates). For a
length L sequence S, the binding energy in an equilibrium
reaction: S + TP ⇀↽ S-TP idepends on the sequence S =
s1s2 · · · sL where si ∈ {A,C,G,T} (DNA), si ∈ {A,C,G,U}
(RNA), si ∈ {A,R,N,D,C,E,Q,G,H,I,L,K,M,F,P,S,T,W,Y,V,U,O}
(peptide/protein) and TP is target protein. The binding energy
E(S) consists of two parts, [13] the specific binding energy
εs and the nonspecific binding energy ε0:

E(S) = εs + ε0 ' εs. (1)

εs is determined by the binding details of the sequence S to
TP , and thus depends on the specific sequence of nucleotides
si in S. ε0 is independent of the sequence, and represents the
contribution of the Coulomb interaction to the RNA-protein-
binding affinity. At least for RNA- and DNA-protein interac-
tions, in equation (1), the non-specific interactions energy, ε0
is typically several orders of magnitude smaller than εs [13],
and in any case is a constant for any sequence of L bases of
the same length. Thus for simplicity, we ignore it and assume
that approximation (1) holds.

It is known that at least for some systems where it has
been measured (the Mnt-repressor system [11]), it is a good
approximation to assume that each nucleotide in the sequence
contributes to the specific binding energy εs independently:

εs =

L∑
i=1

εsi , (2)

where εsi is the energy contribution of the nucleotide si in
the S sequence. Practically, the binding energy εs cannot be
determined directly from experiments. However, if we arbi-
trarily choose a sequence S∗ = s∗1s

∗
2 · · · s∗L as reference, then

the discrepancy in binding energy of S∗ from any sequence
S, which we can treat as Fs, the fitness of the sequence S is:

Fs ≡ εs∗ − εs (3)

=

L∑
i=1

εs∗
i
−

L∑
i=1

εsi (4)

=

L∑
i=1

(εs∗
i
− εsi) =

L∑
i=1

fi (5)

In this case, fi ≡ εs∗
i
− εsi can be measured experimentally

by using point mutations [14].

Solution:

Individual: U C U A A G G C A G U A U

C U G A C U G A A C G U U

Target (Protein)

1st right neighbor 1st left neighbor
2nd right neighbor 2nd left neighbor
Binding Energy

Fig. 1. Energy Model Example (sequence length L = 13 with optimal
binding sequence (Aptamer) S∗ = CUGACUGAACGUU and current sample
sequence S = UCUAAGGCAGUAU).

We can further decompose the the binding energy, εsi
between a base si in a sequence S and its binding site in
the target protein through equation 6:

εsi = c0(i) + r1(i) + l1(i) + r2(i) + l2(i) + · · · (6)

= c0(i) +

L∑
j=1

(rj(i) + lj(i))

' c0(i) +

2∑
j=1

(rj(i) + lj(i)) (7)

4

where c0(i) is the binding energy between base si and most
adjacent amino acid residue in the target and rj(i) (or lj(i))
is the binding energy between base si and j th adjacent amino
acid residue in the target to the right (or left) direction (see
the arrow↔ in the Figure 1). If we assume that we can ignore
effects on binding energy of neighbours further than two
sequence locations away, then we can use the approximated
equation 7. Combining equations 5 and‘7, we get equation 8:

Fs =

L∑
i=1

c∗0(i) +
2∑
j=1

(r∗j (i) + l∗j (i))

−c0(i)−
2∑
j=1

(rj(i) + lj(i))


=

L∑
i=1

(c∗0(i)− c0(i)) +
L∑
i=1


2∑
j=1

(r∗j (i)− rj(i))


+

L∑
i=1


2∑
j=1

(l∗j (i)− lj(i))

 (8)

If we adapt von Hippel and Berg’s two-state model [15], which
assigns an energy difference, α to each nucleotide si which
does not match the s∗i in the optimal binding sequence, and
norrmalise α as 1, then the directed interaction effect term in
equation 8 can be rewritten as equation 9:

c∗0(i)− c0(i) = 1− δsis∗i (9)

where δ is the Kronecker delta function.
Combining equations 8 and 9, we finally obtain the fitness

function Fs of equation 10:

Fs =

L∑
i=1

(1− δsis∗i)︸ ︷︷ ︸
direct interaction effect

+

L∑
i=1


2∑
j=1

(r∗j (i)− rj(i))

︸ ︷︷ ︸
right neighbour effect

+

L∑
i=1


2∑
j=1

(l∗j (i)− lj(i))

︸ ︷︷ ︸
left neighbhour effect

. (10)

With these simplifications, all that is now needed is to
find suitable values for the neighbour interaction effects in
equation 10. In principle, we could take these directly from
measured values. In practice, there are few such measurements
available even for the direct interaction effect, and (to the
best of our knowledge) none for neighbour interaction effects.
Instead, we followed Levitan and Kauffman [16] in treating
them as Gaussian noise. For example, for the first neighbour
to the right, we generated a probability table indexed by the
three values s∗i , si and s∗i+1, by sampling from a Gaussian with
mean 0 and standard deviation σ1. For the second neighbour,
we instead indexed by s∗i , si and s∗i+2, and sampled from a

TABLE I
A TYPICAL FIRST NEIGHBOUR ENERGY MATRIX (GENERATED BY

SAMPLING FROM N (0, 0.12)).

s∗i = A s∗i±1 = A s∗i±1 = G s∗i±1 = C s∗i±1 = U

si = G -0.104048 0.211441 0.231371 0.136227
si = C -0.181555 0.458834 0.308115 -0.248519
si = U -0.268548 -0.008879 -0.191869 0.161160

s∗i = G s∗i±1 = A s∗i±1 = G s∗i±1 = C s∗i±1 = U

si = A -0.354902 -0.061527 0.311967 0.187853
si = C 0.392159 -0.114302 0.117499 -0.132544
si = U -0.082219 0.299967 -0.177403 0.252034

s∗i = C s∗i±1 = A s∗i±1 = G s∗i±1 = C s∗i±1 = U

si = A -0.418617 0.418001 0.008278 -0.198901
si = G 0.055708 -0.102984 -0.304718 0.224832
si = U 0.214901 -0.210827 0.200560 -0.269409

s∗i = U s∗i±1 = A s∗i±1 = G s∗i±1 = C s∗i±1 = U

si = A -0.120875 0.011116 0.236024 -0.078499
si = G -0.210954 -0.042641 0.033997 -0.220864
si = C 0.043810 0.315074 -0.076174 -0.107441

Gaussian with standard deviation σ2. We made two important
simplifications. We used the same table for all positions i, and
we also assumed that the table for lj was the same as for rj .
While these two simplifications will impose symmetries on
the solution space, our mutation-only algorithm would not be
able to make use of them, so these symmetries are unlikely
to affect results (this may need to be revisited for algorithms
incorporating recombination, since such algorithms might be
able to take advantage of the symmetries). There is a further
complication. If we follow the same procedure for the case
s∗i = si, then the fitness of the intended optimal solution will
not, in general, be zero (in principle, it might not even be the
optimum). To forestall this, in the case where s∗i = si, we set
the neighbour effects to zero.

Of course, we needed to choose suitable values for the
standard deviations. We can generally assume that interaction
effects will be smaller than direct effects, so we used σ1 = 0.1,
σ2 = 0.01. Typical energy tables may be seen in tables I and II.

As an example of their application, consider the boxed
nucleotides in figure 1. Since the nucleotides do not match, for
the direct interaction effect we have 1−δsis∗i = 1. For the first
neighbour effect, we have si = G, s∗i = U and s∗i−1 = C, so
the value is -0.042641 according to table I. In calculating the
second-left-neighbour effect, we have s∗i−2 = A, so looking
up table II, we find that the relevant value is 0.010910.

V. EXPERIMENTS

In this section, we detail the experiments we carried out.
The main aim of our experiments was to determine whether
string matching can be a useful analogue for chemical binding,
when interaction effects are both largely spatial, and not too
large relative to the primary bonding. As discussed, the latter
is probably a reasonable model for binding by small RNA
aptamers, but a quite poor one for binding of large proteins,
where stereoscopic effects are far more important.

5

TABLE II
A TYPICAL SECOND NEIGHBOUR ENERGY MATRIX (GENERATED BY

SAMPLING FROM N (0, 0.012)).

s∗i = A s∗i±2 = A s∗i±2 = G s∗i±2 = C s∗i±2 = U

si = G -0.013801 0.041062 0.002391 0.018501
si = C 0.025344 -0.019649 0.034144 0.021813
si = U -0.000799 0.010910 0.007023 0.042567

s∗i = G s∗i±2 = A s∗i±2 = G s∗i±2 = C s∗i±2 = U

si = A -0.016213 0.024762 -0.001358 0.042338
si = C 0.014774 -0.031148 0.016136 -0.019808
si = U 0.007768 0.008814 -0.027459 0.045023

s∗i = C s∗i±2 = A s∗i±2 = G s∗i±2 = C s∗i±2 = U

si = A 0.011656 0.001185 -0.011229 0.006667
si = G -0.017614 -0.028490 -0.003105 -0.038451
si = U 0.021532 0.039736 0.021032 -0.000874

s∗i = U s∗i±2 = A s∗i±2 = G s∗i±2 = C s∗i±2 = U

si = A -0.005360 -0.006246 -0.022683 -0.0047054
si = G 0.000751 -0.016758 0.020551 -0.000128
si = C 0.001281 0.034197 -0.024489 -0.015193

TABLE III
GENETIC ENVIRONMENT AND PARAMETERS

Alphabet : A(0), G(1), C(2), U(3)
Genotype expression : 1 dimensional array S
Genotype Length(L) : 20 bp

Population size : 106

Maximum rounds : 60
Selection Method : deterministic tournament with size 2

Fitness function : Equation 10
Recombination rate : 0 (not used)

Mutation rate (per base) : 0.0001
Number of Runs: 100

Energy Models: three randomly sampled models
Neighbour energy effect : None/1st/1st & 2nd

Target Type : Uniform/PeriodicRandom

A. Evolutionary Computation Environments

The evolutionary environments used in these experiments
are summarised in table III. The parameter settings are a
compromise between computational feasibility and similarity
to settings in SELEX and directed evolution. The shortest
mutable regions used in chemistry are 15 bases, so we used
15 bases as our smallest genome length. To get some idea
of scaling, we also used 20 bases – realistic, but still on
the low end of what might be used in chemistry. For space
reasons, we only present the 20-base results here. We used the
largest size population (106)we realistically could handle in
cpu-based computing. To partially compensate for the smaller
populations, we used 60 generations, substantially more than
would normally be used in directed evolution, but necessary
for our far smaller populations to converge to an optimum. We
used a mutation rate of 10−4 per cycle per base, comparable
to that used in SELEX [17].

Selection mechanisms based on RNA- or protein-protein
binding have a complex relationship with the fitness (i.e.
binding energy) function. Under the assumption that a binding
site can never be occupied by more than one sequence element
at a time, the binding probability of a sequence S by the target

TABLE IV
BINDING TARGETS FOR EVOLUTIONARY EXPERIMENTS

Type Code Target
Uniform 0 AAA · · ·A

0a GGG · · ·G
0b CCC · · ·C
0c UUU · · ·U

Periodic 1 AGCUAGCU · · ·AGCU
Random 3 UGCUAGAAAGCAUGCGGGGA

3a CGUGCGGGGAUCGCAUGCUA

molecules has the form of the Fermi function,

P (S, µ) =
1

1 + exp
(

−E(S)−µ
kBT

) , (11)

where kB is the Boltzmann constant, µ is the chemical poten-
tial, and E(S) is the binding energy of S to the target [18].
This probability function is a little too complex to implement
efficiently in a 106 population evolutionary algorithm, but it
has the form of a fairly soft selection pressure; we substituted
it with the computationally far more efficient mechanism of a
tournament of size 2. Recombination method is not generally
used in SELEX or the simpler forms of directed evolution, so
we omitted this operator from our simulation.

We used three different forms of binding energy model:
neighbour-independent (i.e. effectively, string matching); de-
pendence on only the first neighbour, and dependence on
the first and second neighbours. To eliminate the possibility
that results might depend on the specific randomly-sampled
energy models, we repeated the experiments three times with
independently Gaussian-sampled models.

We found in preliminary studies that the results depended
to some degree on the target molecule, so we studied three
kinds of targets:

1) Uniform targets, in which the same symbol is repeated
for the length of the string

2) Periodic targets, in which a substring is repeated for the
length of the string

3) Random targets, in which the whole string is randomly
initialised

They are shown in detail in table IV (the code shown there is
used in the legends of the figures showing our results).

B. Software and Hardware Environments

TABLE V
SOFTWARE AND HARDWARE SUMMARY

Base Library : EO C++ Library 1.0.2 [19]
Operating System : Linux (Kernel 2.6.26)

C++ compiler : g++ 4.1.2 with -O3 optimization
Programming language : C++

CPU : Intel(R) Xeon(R) E5310 1.60GHz
Main memory : 2 Gigabyte

The software and hardware environments used in these
experiments are summarised in table V. As the basic frame-
work, we used the used ANSI-C++ compliant evolutionary
computation library Evolving Objects (EO) [19].

6

VI. RESULTS

Figures 2–8 show results (best-of-generation and mean
fitness) averaged over 100 runs for each of the seven exper-
imental settings (no neighbour influence, three randomly-set
first-neighbour influence models, and three randomly-set first-
and second-neighbour models). Each curve represents one of
the seven target strings.

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60

F
it
n
e
s
s

Generation

aptamer with 0Mx1N Energy dep E[Avg|Best] in 100 times Experiments

"av_av-0-0_Mx1.txt" using 1:2
"av_av-0a-0_Mx1.txt" using 1:2
"av_av-0b-0_Mx1.txt" using 1:2
"av_av-0c-0_Mx1.txt" using 1:2
"av_av-1-0_Mx1.txt" using 1:2
"av_av-3-0_Mx1.txt" using 1:2

"av_av-3a-0_Mx1.txt" using 1:2
"best_av-0-0_Mx1.txt" using 1:2

"best_av-0a-0_Mx1.txt" using 1:2
"best_av-0b-0_Mx1.txt" using 1:2
"best_av-0c-0_Mx1.txt" using 1:2
"best_av-1-0_Mx1.txt" using 1:2
"best_av-3-0_Mx1.txt" using 1:2

"best_av-3a-0_Mx1.txt" using 1:2

Fig. 2. Best and Average Fitnesses, no Neighbour Interaction

Figure 2 shows the fitness curves obtained with no interac-
tion between neighbours (i.e. a pure string-matching problem).
As we might anticipate, all curves are essentially coincident,
because the fitness landscapes for each target are the same.

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60

F
it
n
e
s
s

Generation

aptamer with 1Mx1N Energy dep E[Avg|Best] in 100 times Experiments

"av_av-0-1_Mx1.txt" using 1:2
"av_av-0a-1_Mx1.txt" using 1:2
"av_av-0b-1_Mx1.txt" using 1:2
"av_av-0c-1_Mx1.txt" using 1:2
"av_av-1-1_Mx1.txt" using 1:2
"av_av-3-1_Mx1.txt" using 1:2

"av_av-3a-1_Mx1.txt" using 1:2
"best_av-0-1_Mx1.txt" using 1:2

"best_av-0a-1_Mx1.txt" using 1:2
"best_av-0b-1_Mx1.txt" using 1:2
"best_av-0c-1_Mx1.txt" using 1:2
"best_av-1-1_Mx1.txt" using 1:2
"best_av-3-1_Mx1.txt" using 1:2

"best_av-3a-1_Mx1.txt" using 1:2

Fig. 3. Best and Average Fitnesses, Nearest Neighbour Interaction (Case 1)

Figures 3–5 show the corresponding behaviour for three dif-
ferent randomly-sampled energy dependence matrices, when
only adjacent neighbours are taken into account. In these cases,
the initial energy distributions differ depending on the targets
(because with different targets, random differences in the
energy matrices will slightly change the energy distributions),
but these differences rapidly disappear through evolution. Con-
vergence of the best and average fitness still occur at almost
exactly the same times (33 and 50 generations respectively).

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60

F
it
n
e
s
s

Generation

aptamer with 1Mx2N Energy dep E[Avg|Best] in 100 times Experiments

"av_av-0-1_Mx2.txt" using 1:2
"av_av-0a-1_Mx2.txt" using 1:2
"av_av-0b-1_Mx2.txt" using 1:2
"av_av-0c-1_Mx2.txt" using 1:2
"av_av-1-1_Mx2.txt" using 1:2
"av_av-3-1_Mx2.txt" using 1:2

"av_av-3a-1_Mx2.txt" using 1:2
"best_av-0-1_Mx2.txt" using 1:2

"best_av-0a-1_Mx2.txt" using 1:2
"best_av-0b-1_Mx2.txt" using 1:2
"best_av-0c-1_Mx2.txt" using 1:2
"best_av-1-1_Mx2.txt" using 1:2
"best_av-3-1_Mx2.txt" using 1:2

"best_av-3a-1_Mx2.txt" using 1:2

Fig. 4. Best and Average Fitnesses, Nearest Neighbour Interaction (Case 2)

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60

F
it
n
e
s
s

Generation

aptamer with 1Mx3N Energy dep E[Avg|Best] in 100 times Experiments

"av_av-0-1_Mx3.txt" using 1:2
"av_av-0a-1_Mx3.txt" using 1:2
"av_av-0b-1_Mx3.txt" using 1:2
"av_av-0c-1_Mx3.txt" using 1:2
"av_av-1-1_Mx3.txt" using 1:2
"av_av-3-1_Mx3.txt" using 1:2

"av_av-3a-1_Mx3.txt" using 1:2
"best_av-0-1_Mx3.txt" using 1:2

"best_av-0a-1_Mx3.txt" using 1:2
"best_av-0b-1_Mx3.txt" using 1:2
"best_av-0c-1_Mx3.txt" using 1:2
"best_av-1-1_Mx3.txt" using 1:2
"best_av-3-1_Mx3.txt" using 1:2

"best_av-3a-1_Mx3.txt" using 1:2

Fig. 5. Best and Average Fitnesses, Nearest Neighbour Interaction (Case 3)

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60

F
it
n
e
s
s

Generation

aptamer with 2Mx1N Energy dep E[Avg|Best] in 100 times Experiments

"av_av-0-2_Mx1.txt" using 1:2
"av_av-0a-2_Mx1.txt" using 1:2
"av_av-0b-2_Mx1.txt" using 1:2
"av_av-0c-2_Mx1.txt" using 1:2
"av_av-1-2_Mx1.txt" using 1:2
"av_av-3-2_Mx1.txt" using 1:2

"av_av-3a-2_Mx1.txt" using 1:2
"best_av-0-2_Mx1.txt" using 1:2

"best_av-0a-2_Mx1.txt" using 1:2
"best_av-0b-2_Mx1.txt" using 1:2
"best_av-0c-2_Mx1.txt" using 1:2
"best_av-1-2_Mx1.txt" using 1:2
"best_av-3-2_Mx1.txt" using 1:2

"best_av-3a-2_Mx1.txt" using 1:2

Fig. 6. Best and Average Fitnesses, Second Neighbour Interaction (Case 1)

7

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60

F
it
n
e
s
s

Generation

aptamer with 2Mx2N Energy dep E[Avg|Best] in 100 times Experiments

"av_av-0-2_Mx2.txt" using 1:2
"av_av-0a-2_Mx2.txt" using 1:2
"av_av-0b-2_Mx2.txt" using 1:2
"av_av-0c-2_Mx2.txt" using 1:2
"av_av-1-2_Mx2.txt" using 1:2
"av_av-3-2_Mx2.txt" using 1:2

"av_av-3a-2_Mx2.txt" using 1:2
"best_av-0-2_Mx2.txt" using 1:2

"best_av-0a-2_Mx2.txt" using 1:2
"best_av-0b-2_Mx2.txt" using 1:2
"best_av-0c-2_Mx2.txt" using 1:2
"best_av-1-2_Mx2.txt" using 1:2
"best_av-3-2_Mx2.txt" using 1:2

"best_av-3a-2_Mx2.txt" using 1:2

Fig. 7. Best and Average Fitnesses, Second Neighbour Interaction (Case 2)

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60

F
it
n
e
s
s

Generation

aptamer with 2Mx3N Energy dep E[Avg|Best] in 100 times Experiments

"av_av-0-2_Mx3.txt" using 1:2
"av_av-0a-2_Mx3.txt" using 1:2
"av_av-0b-2_Mx3.txt" using 1:2
"av_av-0c-2_Mx3.txt" using 1:2
"av_av-1-2_Mx3.txt" using 1:2
"av_av-3-2_Mx3.txt" using 1:2

"av_av-3a-2_Mx3.txt" using 1:2
"best_av-0-2_Mx3.txt" using 1:2

"best_av-0a-2_Mx3.txt" using 1:2
"best_av-0b-2_Mx3.txt" using 1:2
"best_av-0c-2_Mx3.txt" using 1:2
"best_av-1-2_Mx3.txt" using 1:2
"best_av-3-2_Mx3.txt" using 1:2

"best_av-3a-2_Mx3.txt" using 1:2

Fig. 8. Best and Average Fitnesses, Second Neighbour Interaction (Case 3

Figures 6–8 illustrate the same properties for energy models
incorporating both first and second neighbour interactions.
Interestingly, despite the substantially reduced scale of second
neighbour interactions compared with first neighbour, the
spread in initial energy levels between different targets is
substantially increased. Nevertheless, there is again absolutely
no effect on the time to convergence, with both best and
average fitness converging at exactly the same times.

VII. ANALYSIS

The key result of this work lies in a contrast.
When there was no dependence of binding energy on neigh-

bours, the (normalised) distribution of binding energies was
essentially independent of the target. Adding first-neighbour
dependence to the binding energy created a significant de-
pendence on the target, while incorporating second-neighbour
dependences as well increased it still further. In the latter case,
the mean binding energy of the initial (random) population
could vary from 7 to 11 (figure 6), depending on the target
(note that in the context of populations of 106 individuals, this
could not be an artefact of sampling error).

Yet adding first and second neighbour dependences made
no discernible difference to the convergence time (for either
best or mean fitness). That is, changes to the shape and scale
of the fitness landscapes induced by these local dependences
did not change the difficulty of finding the optimum.

VIII. CONCLUSIONS

A. Summary

The primary conclusion we can draw is that for binding
energy problems where there are no long-distance epistases,
string matching is a reasonable surrogate: conclusions drawn
from it will likely be applicable to the original chemical
problem. Any local dependences have little effect on the
problem difficulty. This is important, because string matching
can be readily coded in libraries such as CUDA, and may be
expected to yield very substantial speed-ups. Realistically, we
may be able to run carefully-tuned evolutionary algorithms
with populations of 107 or even 108, i.e. approaching the
lower-end populations of real directed evolution.

B. Assumptions and Limitations

The key limitation of this problem is its restriction to local
influences (and in particular, its assumption that the genotype
components are the primary interacting components). This is
a reasonable assumption for RNA/DNA aptamers. It is also a
reasonable assumption for short peptides, with the one proviso,
that in those cases, we also need to take into account the RNA-
amino acid triplet mapping. Although it needs to be validated,
we do not expect that the triplet mapping would greatly change
our conclusions.

On the other hand, it is clear that for longer proteins, local
interactions are not a reasonable approximation to the real
fitness function. While they will be present, they will not be
the dominant component of the energy function, especially far
from the optimum. In these cases, N−k landscapes may well
be a better model. Of course the downside of N-k landscapes is
the difficulty of implementing them in restricted computational
models. Thus it is likely that, for N-k landscapes, we would
be limited to populations of the order of the 106 used here.

C. Further Work

The simplest extensions of this work are further validation:
testing with N−k landscapes, testing whether any likely biases
in mutation operators are likely to affect results, investigating
the effects of the sigmoid-probability selection operators and
so on.

But the most interesting directions are extensions to the
kinds of problems really faced by chemists,. We noted previ-
ously that the two objectives – binding affinity and selectivity
– are generally in conflict. This is especially the case in
medical applications, where disease agents may well have been
selected to be antigenically similar to human tissues (indeed,
there is strong evidence that this mimicry is closely associated
with autoimmune diseases [20]). It is simply unknown whether
this antigenic similarity would elicit similar binding responses
from the kinds of molecules derived through SELEX or

8

directed evolution. In any case, it seems desirable to find
good evolutionary methods for these conflicting objectives.
Current methods typically consist of evolving (or selecting)
first for binding affinity, then further evolving (or selecting)
for selectivity. This is unlikely to be even a halfway-good
algorithm.

On the other hand, classic multi-objective algorithms are
unlikely to be easy to implement in chemistry. Elite manage-
ment is difficult enough, while dominance ranking is clearly
infeasible. It might be possible to implement some form
of noisy, quantised dominance ranking through microfluidics
technology, but this would be expensive, and unlikely to be
developed unless clear benefits could be demonstrated through
simulation. Alternatively, thinking within the restrictions of
directed evolution, it may be possible to find acceptable
multi-objective algorithms that don’t require these expensive
operations.

Similarly, what we know about dynamic optimisation and
co-evolution could be useful in personalised medicine, in re-
optimising treatments as diseases such as cancers and HIV re-
adapt themselves. Here, simple algorithms such as the hybrid
immigrants GA [21] could be relatively easily adapted to
chemistry, and might well make a significant contribution.

ACKNOWLEDGMENT

Seoul National University Institute for Computer Technol-
ogy provided research facilities for this study, which was sup-
ported by the Basic Science Research Program of the National
Research Foundation of Korea (NRF) funded by the Ministry
of Education, Science and Technology (Project No. 2010-
0012546), Research Expenses for Foreign Professors funded
by Seoul National University(Project No. 400-20100189), and
the BK21-IT program of MEST.

We would like to thank Dr Sung Chun Kim of Genoprot Co.
and Prof. Sunjoo Jeong of DanKook University for insightful
discussions on the chemistry background to this paper.

REFERENCES

[1] R. Stoltenburg, C. Reinemann, and B. Strehlitz, “Selex–a (r)evolutionary
method to generate high-affinity nucleic acid ligands.” Biomol
Eng, vol. 24, no. 4, pp. 381–403, 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.bioeng.2007.06.001

[2] D. Vavvas and D. D’Amico, “Pegaptanib (Macugen): treating neo-
vascular age-related macular degeneration and current role in clinical
practice.” Ophthalmology clinics of North America, vol. 19, no. 3, pp.
353–360, 2006.

[3] C. Tuerk and L. Gold, “Systematic evolution of ligands by exponential
enrichment: Rna ligands to bacteriophage t4 dna polymerase,”
Science, vol. 249, no. 4968, pp. 505–510, 1990. [Online]. Available:
http://www.sciencemag.org/cgi/content/abstract/249/4968/505

[4] W. Stemmer et al., “Rapid evolution of a protein in vitro by DNA
shuffling,” Nature, vol. 370, no. 6488, pp. 389–391, 1994.

[5] J. Carothers, S. Oestreich, and J. Szostak, “Aptamers selected for higher-
affinity binding are not more specific for the target ligand,” J. Am. Chem.
Soc, vol. 128, no. 24, pp. 7929–7937, 2006.

[6] C. Ferreira, C. Matthews, and S. Missailidis, “DNA aptamers that bind
to MUC1 tumour marker: design and characterization of MUC1-binding
single-stranded DNA aptamers,” Tumor Biology, vol. 27, no. 6, pp. 289–
301, 2006.

[7] Y. G. Lee, R. I. McKay, K. I. Kim, D. K. Kim, and X. H. Nguyen,
“Investigating vesicular selection: A selection operator from in-vitro
evolution,” Seoul National University Structural Complexity Laboratory,
Tech. Rep. TRSNUSC:2009:001, 2009.

[8] T. Rasila, M. Pajunen, and H. Savilahti, “Critical evaluation of ran-
dom mutagenesis by error-prone polymerase chain reaction protocols,
escherichia coli mutator strain, and hydroxylamine treatment,” Analytical
Biochemistry, vol. 388, no. 1, pp. 71–80, 2009.

[9] N. A. Pierce and E. Winfree, “Protein design is np-hard,” Protein
Eng, vol. 15, no. 10, pp. 779–82, Oct 2002. [Online]. Available:
http://peds.oxfordjournals.org/cgi/content/full/15/10/779

[10] S. A. Kauffman and E. D. Weinberger, “The nk model of rugged fitness
landscapes and its application to maturation of the immune response,”
Journal of Theoretical Biology, vol. 141, no. 2, pp. 211 – 245, 1989. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6WMD-
4KCPS8W-6/2/6907cba4ac11f94b7f90ffec66b1ae3e

[11] G. D. Stormo, S. Strobl, M. Yoshioka, and J. S. Lee,
“Specificity of the mnt protein : Independent effects of
mutations at different positions in the operator,” Journal of
Molecular Biology, vol. 229, no. 4, pp. 821–826, 1993. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6WK7-
45PV5P8-80/2/0ad1853960c6537fe3f42ecc930a9686

[12] D. Corne, M. Oates, and D. Kell, “On fitness distributions and expected
fitness gain of mutation rates in parallel evolutionary algorithms,”
Parallel Problem Solving from Nature —PPSN VII, pp. 132–141, 2002.

[13] G. D. Stormo and D. S. Fields, “Specificity, free energy and information
content in protein-dna interactions.” Trends Biochem Sci, vol. 23, no. 3,
pp. 109–113, 1998.

[14] D. S. Fields, Y. yuan He, A. Y. Al-Uzri, and G. D. Stormo, “Quantitative
specificity of the mnt repressor,” J. Mol. Biol., vol. 271, no. 2, pp. 178–
194, 1997.

[15] P. H. von Hippel and O. G. Berg, “On the specificity of dna-protein
interactions,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 83, no. 6, pp. 1608–1612, Mar 1986.

[16] B. Levitan and S. Kauffman, “Adaptive walks with noisy fitness
measurements,” Molecular Diversity, vol. 1, pp. 53–68, 1995. [Online].
Available: http://dx.doi.org/10.1007/BF01715809

[17] K. A. Eckert and T. A. Kunkel, “High fidelity dna synthesis by the
termus aquaticus dna polymerase,” Nucleic Acids Research, vol. 18,
no. 13, pp. 3729–3744, Jul 1990.

[18] Y. Yang, H. Wang, and Q. Ouyang, “Dynamics of dna in vitro
evolution with mnt-repressor: Simulations and analysis,” Phys. Rev.
E, vol. 68, no. 3, p. 031903, Sep 2003. [Online]. Available:
http://prola.aps.org/abstract/PRE/v68/i3/e031903

[19] M. Keijzer, J. Merelo, G. Romero, and M. Schoenauer, “Evolving
objects: A general purpose evolutionary computation library,” in
Artificial Evolution, ser. Lecture Notes in Computer Science, P. Collet,
C. Fonlupt, J.-K. Hao, E. Lutton, and M. Schoenauer, Eds. Springer
Berlin / Heidelberg, 2002, vol. 2310, pp. 829–888. [Online]. Available:
http://www.springerlink.com/index/QPC0FDXGT3523M4R.pdf

[20] A. Ebringer and C. Wilson, “HLA molecules, bacteria and autoimmu-
nity,” Journal of Medical Microbiology, vol. 49, no. 4, pp. 305–311,
2000.

[21] S. Yang and R. Tinós, “A hybrid immigrants scheme for genetic algo-
rithms in dynamic environments,” International Journal of Automation
and Computing, vol. 4, no. 3, pp. 243–254, 2007.

