
FRONTIERS IN THE CONVERGENCE OF BIOSCIENCE AND INFORMATION TECHNOLOGIES, OCTOBER 2007 1

Developmental Evaluation in Genetic
Programming: A Position Paper

Tuan Hao Hoang, Member, IEEE, R I (Bob) McKay, Senior Member, IEEE,
Daryl Essam, Member, IEEE, and Xuan Hoai Nguyen, Member, IEEE

Abstract—Standard genetic programming genotypes are normally highly disorganized, poorly structured and not
normally re-used (i.e, bloat etc.). This is also true of previous developmental genetic programming systems [1],
[2], which exploit regularity by using procedures, functional modules, or macros and parameters passing. Instead,
in biological developmental evolution, nature works through code duplication to generate modularity, regularity and
hierarchy. Moreover, previous developmental approaches have only one level of evaluation for each individual - an
approach that only has adaptive advantages to entire species, rather than particular individuals. We argued in [3], [4] that
evaluation during development is necessary for structural regularity to emerge. To confirm the benefits of developmental
evaluation and the contribution of code duplication to nature, our new sophisticated developmental process uses a new
representation. That system, Developmental Tree Adjoining Grammar Guided GP (DTAG3P)- used L-systems to encode
tree adjoining grammar guided (TAG) derivation trees, and has been investigated in [4]. On the family of problems tried,
we have found further major improvement in performance over original approaches TAG3P and GP, in ways which
suggest structural regularity solutions have been exploited.

Index Terms—Regularity, developmental evaluation, developmental genetic programming.

✦

1 INTRODUCTION

G ENETIC programming (GP) was devel-
oped by Koza [5] in 1992 with the idea

of getting computers to automatically solve
problems without having to tell them how
to do it. Based on observations of biological
systems, GP uses an abstraction of Darwin’s
natural selection mechanisms to evolve pop-
ulations of solutions to problems. One of the
biggest problems with GP is called coat bloat.
Genetic programming produces solutions with
large amounts of unnecessary code that expo-
nentially increases over time and is not pro-
portional to increase the quality of the solu-
tions produced. An analogy to GP, in nature,
the human genome has less than 5% of its

• H. Hoang and D. Essam are with the School of IT and EE,
University of New South Wales@ADFA, Canberra, Australia.
B. McKay and X. Nguyen are with the School of CS and E, Seoul
National University, Korea.

This is a self-archived copy of the accepted paper, self-archived under
IEEE policy. The authoritative, published version can be found at
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4524205&tag=1

3.2 billion As, Cs, Gs and Ts that construct
the human genome [6]. The remainder is just
rubbish, plain and simple. However, unlike GP,
the bloat in Hox gene seems steady and not
exponential.

Moreover, unlike biological systems, genetic
programming is not very good at finding scal-
able structured solutions, rarely finding hier-
archical or structural regularity, and exhibiting
no hierarchical or structural regularity, rela-
tively poor repetition of units, self-similarity,
or re-use. By contrast, the natural evolution-
ary systems on which it is based are able to
evolve structural regularity (e.g., the Hox gene
complex is a subset of the Homeobox genes
which are a larger family of transcription factor
proteins and share a similar 60 amino acid
DNA binding homeodomain [7]).

There has been wide range of approaches
to solving this problem in GP. Koza intro-
duced Automatically Define Functions (ADF)
[1], where parts of the program are modu-
larized and encapsulated, this approach also
reduced coat bloat. Koza showed [1] that ADFs

FRONTIERS IN THE CONVERGENCE OF BIOSCIENCE AND INFORMATION TECHNOLOGIES, OCTOBER 2007 2

allows genetic programming systems to better
exploit regularities of problem domains, im-
proving system performance. Spector [2] in-
vestigated Automatic Defined Macros (ADMs)
these were based from ADFs, with also the
idea of using the term ”macro” as in many
programming languages. In [2], he observed
that ADMs, like subroutines, can assist in the
modularization of complex programs and in
the exploitation of domain regularities. It was
suggested that ADMs are likely to be useful for
evolving intelligent action systems for complex
environments.

However, these approaches are apparently
not sufficient. Natural evolution exploits reg-
ularities and modules by copying or duplicat-
ing. For examples, Moghadam HK et. al [8]
showed the evidence of Hox gene duplica-
tion in rainbow trout where many duplicated
genes appear in the genome and share a high
percentage of amino acid similarity with one
another. Ohno’s book in 1970, Evolution by
Gene Duplication[9] and its update by Zhang
in 2003 [10] clearly demonstrated that the cre-
ation of new structures and behaviors of a
biological organism begins with a gene dupli-
cation. Without gene duplication, the flexibility
of genomes or species in adapting to changing
environments would be severely limited. In
other words, nature does not use procedures
or macros and parameters passing, but instead
works through code duplication to generate
modularity, regularity and hierarchy. We don’t
always need to do the same as nature, but we
do need to understand why nature can work
in a particular way and we can’t (i.e., why
nature can generate structural regularity that
GP can’t).

Recently, a number of authors have built
evolutionary developmental systems in genetic
programming. Rosca investigated an Adaptive
Representation [11], which is based on the dis-
covery of useful building blocks of code. This
approach greatly improved search efficiency
on the problems considered. Jacob [12] inves-
tigated Genetic L-System Programming using
context-free L-systems (OL) with stacking ca-
pability and an evolutionary algorithm to learn
L-systems for the creation and development
of artificial flowers. Haddow el al. used Lin-

denmeyer systems, the mathematical formal-
ism used for biological development study,
for digital circuit design [13]. Later, Develop-
mental Cartesian Genetic Programming was
investigated by Miller et. al., with attempting
to evolve a cell that can construct a larger
program by iteration of the cell’s program in
its environment [14].

Nevertheless, structural regularity, which is
the correlation of patterns within an individual
(e.g., the repetition of units, symmetries, self-
similarities, smoothness), has not been clearly
demonstrated in existing developmental GP
systems. The development in GP allows regu-
larity but it does not guarantee it: it has to have
an evolutionary benefit if it’s to emerge. We
argue that this is because an individual in a GP
system is generally expected to solve problems
immediately, without the benefit of a develop-
mental phase. Although various morphologi-
cal systems have been used in some previous
developmental genetic programming systems
to allow program individuals to ”grow” from
simple to more complex forms. For exam-
ples, Whitley and Gruau in [15] proposed the
technique of a cellular developmental process
encoded by a grammar tree to generate the
families of Boolean neural networks to solve
parity problems. Also, Spector and et. al., in
[16] implemented Ontogenetic Programming -
Ontogenetic HiGP system that includes pro-
gram self-modification functions in the genetic
programming function sets, thereby allowing
evolved program individuals to modify them-
selves during the course of the run. But if these
approaches are used with a single evaluation
as in most artificial developmental systems, it
only has adaptive advantages to entire species,
not to particular individuals, and hence cannot
be selected for by evolution. In developmental
biological systems, on the other hand, evalua-
tion is continuous throughout development (if
the individual is insufficiently fit to survive at
a particular stage of development, the fitness
it would exhibit at later stages is immaterial.
In other words, if an individual is uncompet-
itive at any stage of development, it is un-
likely to survive to reproduce)(e.g., A Human
does not have to be fit just in adulthood. We
must also survive in pregnancy, birth and then

FRONTIERS IN THE CONVERGENCE OF BIOSCIENCE AND INFORMATION TECHNOLOGIES, OCTOBER 2007 3

childhood). In simpler organisms, the organ-
ism faces similar challenges at each stage of
development, but in more complex organisms,
the challenges increase in complexity as the
individual develops. Moreover, once the genes
controlling a particular stage of development
have succeeded at a particular stage of de-
velopment, they tend to become fixed, and to
change only slowly. We aim to simulate these
processes. There are a number of components
to this simulation:

1) Developmental process governed by ’genes’:
for this, we use a Deterministic L-system,
in which the grammar simulates the
genes, and the L-system development
process the growth of the organism

2) Developmental evaluation: for this, we re-
quire a phenotype which we can always
guarantee to evaluate, so we use a tree
adjoining grammar guided genetic pro-
gramming (TAG) representation that has
ideal properties for supporting evalua-
tion during incremental development. In
particular, TAG has a feasibility property,
allowing any TAG expression tree to be
evaluated regardless of the detachment of
any number of its subtrees[17].

3) Evolutionary process evolving the L-system
4) Adaptive variation rates

2 TAG BASED DOL SYSTEM

For our purposes, DOL systems must not only
represent development, but must generate at
each stage an individual which can be evalu-
ated. We use TAG representation, as introduced
in [17]. Briefly, TAG representation consists of
an α tree (’The cat sat on the mat’) and instruc-
tions for adjoining β trees (’black’ or ’which
it liked’) to form a more complex whole (’The
black cat sat on the mat which it liked’). In our
representation, the DOL triple G = (V, ω, P) is
mapped to TAG representation by defining ω to
consist of an α tree together with a predecessor
from P , and each letter {L1, L2, L3,} ∈ V

to be either a predecessor from P or a β tree.
Thus the DOL-rewriting of ω corresponds to
adjunction of successive β trees into the ini-
tial α tree. For example, assume an L-system
G′ = (V ′, ω′, P ′) with V ′ = {L1, L2, L3, L4}, ω′ =

(α1, L1), and P ′ being P ′

1
: L1 → β1β2β3L4β1L2,

P ′

2
: L2 → β2β1β4β3L2L3, P

′

3
: L3 → β5β6L4β7β8L1,

P ′

4
: L4 → β1L2β4β6β7L3. Figure shows tree rep-

resentations of these productions, together with
three stages of the expansion of this system
into a TAG derivation tree.The expansion starts
with the TAG initial tree α1 together with the
predecessor L1. In the stage 1 expansion, L1 is
replaced by its successor in the production rule
P ′

1
. This successor has two predecessors L2 and

L4. In the stage 2 expansion, these are replaced
by their successors using the corresponding
production rules P ′

2
and P ′

4
. This leaves us with

four available predecessors – two occurrences
each of L2 and L3. This process continues until
predefined limits on the number of stages are
reached.

3 A NEW APPROACH TO TAG BASED -
DEVELOPMENTAL 3P (DTAG3P)
DTAG3P uses TAG-based DOL-systems to en-
code Tree Adjoining Grammars, so delimiting
the language of the genetic programming sys-
tem. It is a developmental form of the earlier
TAG3P system, and shares many aspects. We
describe these briefly, but refer readers to[17]
for detail. We assume a lexicalised TAG (LTAG)
grammar Glex defining the sets A of α trees,
and B of β trees. We evolve DOL rulesets (each
ruleset is an evolutionary individual). The rule-
set specifies the development of the individual,
generating a TAG derivation tree at each stage
s of development. This tree is fitness-evaluated
against the corresponding problem Ps from our
target family of problems. Evaluation uses the
standard conversion, first to the corresponding
CFG derivation tree, and then to the expres-
sion tree [17]. We follow Koza’s specification
scheme [5], adapting it to incorporate develop-
mental evaluation:

3.1 Initialisation

We randomly generate maxpop DOL-
systems, each containing nrules rules
R = {R1, R2, . . . , Rnrules

}. We denote
the predecessors of these rules as
Λ = {L1, L2, . . . , Lnrules

}, so that V = Λ
⋃
A

⋃
B

. We randomly select ω = (α, L): α ∈ A,

FRONTIERS IN THE CONVERGENCE OF BIOSCIENCE AND INFORMATION TECHNOLOGIES, OCTOBER 2007 4

L ∈ Λ. We construct the successor (RHS) of
Ri by first randomly drawing β-trees from B

and assigning them to the RHS of Ri, up to a
random limit between minbetas, . . .maxbetas, and
then randomly drawing numletter predecessors
from V and inserting them into the RHS.

3.2 Developmental and Fitness Evaluation
Each individual undergoes a fixed number
maxlife of developmental stages (correspond-
ing to the size of the problem family). Each
individual I is expanded through its devel-
opment stages. At stage s, this generates a
TAG derivation tree Is of Glex and the corre-
sponding CFG derivation tree CF (Is) of G and
expression exp(Is). We evaluate exp(Is) against
the corresponding problem, Ps, to get a fitness
value fit(Is).

3.3 Selection
DTAG3P uses a developmental form of tour-
nament selection of size sizetourn. We first
compare the individuals on stage 1 fitness
fit(I1). The fittest individuals are carried to
stage 2. This is repeated as necessary with
I2, . . . , Imaxlife

; if more than one reach maxlife,
we use random choice. Two individuals I, J are
considered equal if |fit(Is) − fit(Js) ≤ δ|. We
use an elite of 1.

3.4 Genetic Operators
Individuals in the next generation are pro-
duced with probability pX by recombination and
1− pX by alteration.

• Recombination takes two individuals
{P1, P2} and creates two offspring {C1, C2}
by a variant of uniform crossover on
rules: a rule in C1(C2) is with probability
pcopy copied from the corresponding rule
of P1(P2), otherwise is randomly selected
from the rules of P2(P1).

• Alteration consists of three sub-operators
acting on RHSs of rules:

– internal crossover. We emphasise that
this is an exchange of information be-
tween components of an individual,
not a recombination operator: subtree
crossover is performed between rules

– subtree mutation: subtrees are mutated
by subtree mutation

– lexical mutation: the symbol in a node
is randomly substituted

The probability of alteration uses an adap-
tive alteration rate padapt, initially set to
a high value pbad. When a rule is used
in a developmental stage which was used
to select the parent, it is reset to a lower
value pgood. Thus the child is more likely
to inherit this rule unchanged.

3.5 Parameters
The maximum number of generations maxgen,
population size maxpop, and recombination
(pX , pcopy) and alteration (pbad, pgood) rates spec-
ify the evolutionary system; the number of
rules nrules and minbetas, maxbetas, numletter –
respectively minimum and maximum number
of β trees and of predecessors in a rule RHS
– together with the maximum lifetime maxlife

and minimum difference δ, specify the devel-
opmental system.

4 EXPERIMENTAL WORK

4.1 Problem Domain
Two benchmark problems were chosen for
our experiments. The first problem was the
polynomial symbolic regression problem with
its increasing difficulty of polynomial degree,
originally due to Koza [1]: Fn(X) = X +X2 +
X3 + ... + Xn, for various values of n n=1...9,
and the second problem was the family of odd-
k-parity problems {k = 2...10}. We expected to
be able to exploit the increasing difficulty of
the family of these problems using our new
representation and GP system.

4.2 Results
4.2.1 The polynomial symbolic regression
problem
On the polynomial symbolic regression prob-
lem, we observed the performance of vari-
ous systems: GP, TAG3P, DEVTAG, DTAGF9all,
DTAG3P, DTAG3P+; whereas, DTAGF9all is
the DTAG3P system with solving the F9 prob-
lem at all stages of development, DTAG3P+ is
an update version of the DTAG3P by evolving
the fix adaptive mutation rate.

FRONTIERS IN THE CONVERGENCE OF BIOSCIENCE AND INFORMATION TECHNOLOGIES, OCTOBER 2007 5

TABLE 1
Percentage Success Rate

GP TAG DEVTAG DTAGF9all DTAG3P DTAG3P+

0% 8% 33% 0% 73% 100%

TABLE 2
Percentage Success Rate on 8, 10, 12 parity

after 1.25 ∗ 108 Node evaluation (30 runs)

GP TAG DTAG3P+

8 Parity 23% 23% 100%

10 Parity 0% 0% 100%

12 Parity 0% 0% 100%

4.2.2 The parity problems

At the second set of experiments we compare
the performance of the adaptive variation sys-
tem DTAG3P+ with the original TAG3P and
GP systems on the scaling up parity problems
8, 10, 12.

5 CONCLUSION

The conclusion goes here.

ACKNOWLEDGMENTS

The authors would like to thank...

REFERENCES

[1] J. R. Koza, Genetic Programming II: Automatic Discovery of
Reusable Programs. Cambridge Massachusetts: MIT Press,
may 1994.

[2] L. Spector, “Simultaneous evolution of programs and
their control structures,” in Advances in Genetic Program-
ming 2, P. J. Angeline and K. E. Kinnear, Jr., Eds. Cam-
bridge, MA, USA: MIT Press, 1996, ch. 7, pp. 137–154.

[3] R. I. McKay, T. H. Hoang, D. L. Essam, and
X. H. Nguyen, “Developmental evaluation in genetic
programming: the preliminary results,” in Proceedings
of the 9th European Conference on Genetic Programming,
ser. Lecture Notes in Computer Science, P. Collet,
M. Tomassini, M. Ebner, S. Gustafson, and A. Ekárt,
Eds., vol. 3905. Budapest, Hungary: Springer,
10 - 12 Apr. 2006, pp. 280–289. [Online]. Available:
http://link.springer.de/link/service/series/0558/papers/3905/39050280.pdf

[4] H. T. Hao, D. Essam, R. I. McKay, and X. H. Nguyen,
“Developmental evaluation in genetic programming: A
TAG-based framework,” in Proceedings of the Third Asian-
Pacific workshop on Genetic Programming, T. L. Pham, H. K.
Le, and X. H. Nguyen, Eds., Military Technical Academy,
Hanoi, VietNam, 2006, pp. 86–97.

[5] J. R. Koza, Genetic Programming: On the Programming of
Computers by Means of Natural Selection. Cambridge, MA,
USA: MIT Press, 1992.

[6] H. Gee, “Unexpected bits and pieces, special report: the
ethics of genetics,” feb 2001.

[7] G. Schlosser and G. P. Wagner, Eds., Modularity in Devel-
opment and Evolution. The University of Chicago Press,
2004.

[8] H. Moghadam, R. Danzmann, and M. Ferguson, “Orga-
nization of hox clusters in rainbow trout (oncorhynchus
mykiss): a tetraploid model species,” Journal of Molecular
Evolution, vol. 61, no. 6, pp. 804–818, Dec 2005.

[9] S. Ohno, Ed., Evolution by Gene Duplication. Springer-
Verlag, 1970.

[10] J. Zhang, “Evolution by gene duplication: an update,”
Trends in Ecology and Evolution, vol. 18, pp. 292–298, Jun
2003.

[11] J. P. Rosca and D. H. Ballard, “Hierarchical self-
organization in genetic programming,” in Proceedings of
the Eleventh International Conference on Machine Learning.
Morgan Kaufmann, 1994.

[12] C. Jacob, “Genetic L-system programming,” in
Parallel Problem Solving from Nature III, ser. LNCS,
Y. Davidor, H.-P. Schwefel, and R. Männer,
Eds., vol. 866. Jerusalem: Springer-Verlag, 9-
14 Oct. 1994, pp. 334–343. [Online]. Available:
http://www2.informatik.uni-erlangen.de/IMMD-
II/Persons/jacob/Publications/GeneticLSystemProgramming.ps.gz

[13] P. Haddow, T. G., and van Remortel P., “Shrinking the
genotype: L-systems for evolvable hardware,” in Evolvable
Systems: From Biology to Hardware, 4th International Confer-
ence, ICES 2001, ser. Lecture Notes in Computer Science,
Y. Liu, K. Tanaka, M. Iwata, T. Higuchi, and M. Yasunaga,
Eds., vol. 2210. Springer-Verlag, 2001, pp. 128–139.

[14] J. F. Miller and P. Thomson, “A developmental
method for growing graphs and circuits,” in
Evolvable Systems: From Biology to Hardware, Fifth
International Conference, ICES 2003, ser. LNCS,
A. M. Tyrrell, P. C. Haddow, and J. Torresen,
Eds., vol. 2606. Trondheim, Norway: Springer-
Verlag, 17-20 Mar. 2003, pp. 93–104. [Online]. Available:
http://www.elec.york.ac.uk/intsys/users/jfm7/ices2003.pdf

[15] F. Gruau and D. Whitley, “Adding learning to the cellular
development process: a comparative study,” Evolutionary
Computation, vol. 1, no. 3, pp. 213–233, 1993.

[16] L. Spector and K. Stoffel, “Ontogenetic programming,” in
Genetic Programming 1996: Proceedings of the First Annual
Conference, J. R. Koza, D. E. Goldberg, D. B. Fogel, and
R. L. Riolo, Eds. Stanford University, CA, USA: MIT
Press, 28–31 Jul. 1996, pp. 394–399.

[17] N. X. Hoai, R. I. B. McKay, and D. Essam, “Representation
and structural difficulty in genetic programming,”
IEEE Transactions on Evolutionary Computation, vol. 10,
no. 2, pp. 157–166, Apr. 2006. [Online]. Available:
http://sc.snu.ac.kr/courses/2006/fall/pg/aai/GP/nguyen/Structdiff.pdf

FRONTIERS IN THE CONVERGENCE OF BIOSCIENCE AND INFORMATION TECHNOLOGIES, OCTOBER 2007 6

PLACE
PHOTO
HERE

Michael Shell Biography text here.

John Doe Biography text here.

Jane Doe Biography text here.

