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Ecological Application of Evolutionary Computation:
Improving Water Quality Forecasts for the Nakdong River, Korea

Dong-Kyun Kim, Bob Mckay,Senior Member, IEEE, Haisoo Shin,
Yun-Geun Lee and Xuan Hoai Nguyen,Member, IEEE

Abstract— Water quality is an important global issue, re-
quiring effective management, which needs good predictive
tools. While good methods for lake water quality prediction
have previously been developed, accurate prediction of river
water quality has hitherto been difficult. This project combines
process-model and data mining approaches through evolu-
tionary methods, resulting in tools for more effective water
management. Although the work is still in its preliminary stages,
error rates of the predictive models are already around half
those resulting from representative applications of either pure
process-based or pure data mining approaches.

I. I NTRODUCTION

The Nakdong River system in South Korea is one of the
major river systems of North East Asia. It drains an area
home to around ten million, including the million-strong
city of Daegu, and at its mouth forms the primary water
supply for Busan, a city of five million. Such intensive use
inevitably leads to conflicting requirements, a key issue being
the problem of algal blooms, fueled by the nutrients injected
upstream, which periodically blight the river in the vicinity of
Busan. So important is the management of this river that the
Korean government is preparing to invest in the vicinity of
$US30 billion in a scheme to improve its water management.

But management requires information. It is impossible to
manage a river effectively without an understanding of the
effects of management decisions. In the case of algal blooms,
this requires a model of the effects of both management
changes – e.g. decisions on water release from dams, or
controls on nutrient release – and of exogenous changes –
e.g. changes in rainfall levels and timing as a result of climate
change. Currently available models are unsatisfactory.

This project is using evolutionary methods to generate bet-
ter models of the algal dynamics of the catchment. The work
is currently in progress, but has already halved the predictive
error of previously-published models. We are reporting on
it now, to document what has been achieved, and also to
illustrate how the flexibility of evolutionary methods supports
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an interplay between algorithms and expert knowledge that
would be difficult to duplicate with competing methods.

Algal blooms are not unique to Korea. Rivers around
the world are subject to increasing development, and algal
blooms have become a major concern in many countries.
The models we are developing for the Nakdong are designed
around specific knowledge of the ecological setting of that
river, and the data available for it, but the overall techniques
are general, and can be adapted to river systems worldwide.

In the remainder of this paper, we will first (section II)
describe what has previously been done in modelling algal
blooms in lakes and rivers, and discuss some of the available
techniques. Section III follows with a more detailed descrip-
tion of the modelling problem and of the data sources avail-
able, with section IV outlining the methods we are using and
how we plan to extend them. Section V presents the results
of the modelling so far, comparing it with previous work.
We discuss our future plans for the project in section VI,
concluding in section VII with a summary both of the work
itself, and of the role of evolutionary computation.

II. BACKGROUND

A. Ecological Modelling

An ecosystem can be compared to a living system in com-
plexity. It is subject to internal feedback mechanisms, often
unknown and sometimes chaotic; it changes over time, with
the influence of different components waxing and waning. A
large open system like a river not only contains numerous
internal components, but is also affected by unpredictable
external forces, both natural (e.g. weather variations) and
anthropogenic (land use changes, dams and barrages etc.).
The complexity is far beyond what we can hope to model, so
models can only approximate the most important influences.

On the other hand, data for building good models is
often scarce. Some kinds of ecological data can be cheaply
gathered, e.g. from satellites or automated stations. But
much essential data can only be gathered by painstaking
hand collection, so that ecological datasets are often of very
small size, perhaps a few hundred instances. Moreover the
data is subject to noise, arising from measurement error,
external influences, and often the difficulty of reproducing
the measurement circumstances accurately.

One common approach to ecological modelling builds the
models by hand, relying on expert knowledge and exper-
iments to define both the structure of the model and its
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parameters. Unfortunately such approaches often reveal dif-
ficulties in practice. The expert’s knowledge may be wrong,
experimentally-derived parameter values may be subject to
unknown variation ”in the wild”, and so on.

An alternative approach uses machine learning methods
to build models from data. But in many circumstances –
such as our water modelling domain – this also suffers from
problems. The available data is simply not sufficient to justify
a model of the complexity required for accurate prediction.

1) Model Revision: This dilemma, that process mod-
els based on prior knowledge may be too inaccurate, yet
there may be insufficient data for machine learning, can be
resolved in another way: through model revision. In this
method, the problem is not to generate a model de novo,
but to learn revisions to an existing model. Thus the data
may be used to build a model more complex than could
be justified by it alone, yet more accurate than one based
on an a-priori model. In a sense, this is a generalisation
of a widely used approach, using learning methods to fit
parameters in a pre-built model. it has had limited application
in ecological modelling; Todorovski and Dzeroski [1], [2]
implemented equation revision using the equation discovery
system LAGRAMGE, and illustrated its effectiveness by
improving a pre-exisisting model of the net production of
carbon in the Earth ecosystem. However LAGRAMGE uses
complete search of the space of possible modifications;
evolutionary methods may be better suited to this process.

B. Water Quality Modelling

1) Modelling Water Quality in Lakes:Lakes are the
simplest environments for modelling water quality processes.
While many water resource agencies still rely on manually-
constructed process models, machine learning methods have
demonstrated somewhat enhanced performance. Whigham
and Recknagel [3] used Context Free Grammar Genetic
Programming (CFG-GP) to adapt the lake model SALMO,
while Cao et al. [4] optimised the parameters of the closely-
related SALMO-OO using an evolutionary algorithm. Liu
and Yao [5] directly evolved neural network models predict-
ing algal growth, and Welk et al. [6] forecast algal popu-
lation dynamics in freshwater lakes using an evolutionary
algorithm. Recknagel et al. [7] compared time-series algal
predictive models developed by artificial neural networks and
genetic algorithm in freshwater lakes.

2) Modelling Water Quality in Rivers:A river ecosystem
introduces much greater complexity for modelling water
quality. Most notable is the importance of flow. While
water quality may be modelled locally in a lake, in a river
the determinants of water quality are heavily affected by
flow. Taking our example of algal growth, both the algae
themselves, and the nutrients on which they depend, are
carried with the flow. But we can’t concentrate purely on the
flow either, because the algae grow as they are transported.
In effect, we have two extremes: in the zero-flow case (i.e. a
lake) we may pay attention simply to an algal growth model;
at the opposite extreme, in a high flow river, we may ignore

growth (in most such cases, there is no algal problem, so
no need for a model). In the cases of interest, such as the
Nakdong River, the situation lies between these extremes.

Data collection is also more difficult. Monitoring and sam-
ple measurement are needed in widely separated locations
(by comparison with typical lakes), so that good-quality
data is less available. Determining the flow may itself be
problematic. Fitting the mass balance may face unpredictable
water loss and discharge (e.g. illegal intake and dumping,
ground water loss, evaporation, etc). As a result, river models
are much less developed at this stage than lake models.

The most general and best-known process model in river
ecosystems is QUAL2E [8], which has been widely used
to simulate dissolved oxygen under steady flow conditions.
However, application has revealed many inaccurate simu-
lations in different river ecosystems. Extensions have been
made to handle specific conditions, but were mostly designed
to deal with specific physicochemical issues. When the com-
plexities arose from biological interactions, in many cases it
was not accurate enough to use. Conversely, such models
could be extended with more reasonable simulation results
by considering additional biological components [9], [10].

At the opposite extreme, it is possible to take a pure data
mining approach similar to those successfully applied in lake
modelling, in the hope that variables available to the model
may supply surrogates for the unavailable information about
flow and upstream conditions. This was the approach taken
by Kim et al. [11], [12] and Cao et al. [13] in previous
attempts to model algal growth in the Lower Nakdong River,
by learning respectively nonlinear mathematical models and
decision rules predicting the chlorophylla level.

3) Modelling Water Flow: River flow modelling is im-
portant because timely information may allow better man-
agement, whether it be for better control of water flows
in a regulated rivers, or more timely evacuation in the
event of flooding. There have been many applications of
learning methods to these problems, emphasising time-series
prediction in rainfall-runoff modelling [14], [15], and station-
to-station velocities and level relationships in relationto
flooding [16]. Solomatine [11] presents a range of other
applications of learning methods to flow-related prediction,
mainly in flood control.

III. T HE MODELLING PROBLEM

A. Description of the Study Sites

The Nakdong is the longest river in South Korea (ca. 525
km), with approximately ten million people living in and
using water from the basin. The annual rainfall is nearly 1200
mm per year, over 60% concentrated in the Summer monsoon
(June to September) [17]. Four large multi-purpose dams are
sited in the head streams to control flow, which is highly
regulated. Near the mouth, an estuarine barrage protects the
fresh water from salt intrusion, thus increasing the residence
time of the water body, creating what, in some flow states can
be lake-like conditions [18]. The large population of Busan
metropolitan city draws a huge intake from the river. The
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combination of these circumstances has led to a deterioration
of water quality in the lower Nakdong River, resulting in a
proliferation of recurrent algal blooms.

We have data from nine measuring stations throughout
the catchment (see Figure 1). They were originally selected
based on the availability of data and geographical impor-
tance. Six stations (S1 to S6 from lower to upper) are located
in the main channel of the river, while the other three stations
(T1 to T3, see Figure 1) are situated in major tributaries. Of
those stations, algal concentration in the lowest (Mulgeum,
S1) is most important because the high population (ca. five
million) of Busan draws its water nearby. To predict the algal
biomass at this station is the underlying task of our model.

Fig. 1. Nakdong River Basin

B. Data and Sources

For construction of the model, we have a total of twelve
different types of variables and parameters (Table I). Most
hydrological and meteorological data are derived from the
website of the Korean Water Management Information Sys-
tem (WAMIS [19]). Water levels are continuously logged
in each station. Flow rates are derived through a regression
formula based on the river height provided by WAMIS. The
formula generally has the form given in equation 1:

Flow = α ∗ (Height+ β)γ (1)

whereα, β andγ are site-specific (and time-specific) param-
eters that depend on the riverbed contour.

The flow data are particularly problematic, because the
three parametersα, β andγ change wildly when the shape

of the river bed changes; this change is generally slow, but
punctuated at irregular intervals by the silt carried in the
extreme flows from typhoons (for which we know the dates),
and more rarely, by dredging (for which we do not). The
fitting parameters are tuned by WAMIS at irregular intervals,
not coincident with events affecting the river contours, by
measuring actual flows over a period of a few months, then
calibrating the regression constants. In addition, WAMIS’
main purpose is biased toward flood prevention (i.e. high
flow) rather than water quality (low flow); thus flows are most
often measured during high flow, and the models fitted to
minimise error at these times. Disparity between these data,
especially in low flow seasons, might have a large impact on
algal concentration in the water model.

Irradiance and rainfall data were provided courtesy of the
Korea Meteorological Administration (also available from
the KMA website [20]). Catchment areas were derived
from electronic map data. Water temperature and dissolved
oxygen were manually measured at each station. Nutrient
concentrations (nitrate, phosphate and silica) and chlorophyll
a concentration were analysed and measures in the laboratory
from field-collected water samples. Generally, algal biomass
was directly related to chlorophylla concentration, hence it
was predicted using chlorophylla in this paper.

TABLE I

VARIABLES

Variable Unit
Geographical catchment area km2

water level M
Hydrological flow velocity m/s

flow rate m
3/s

irradiance MJ/m2

Meteorological
rainfall mm/day
water temperature ◦C

Physicochemical dissolved oxygen O2 mg/l
nitrate NO3 mg/l
phosphate PO4 mg/l
silica SiO2 mg/l

Biological chlorophyll a µg/l

In building a time-based model from data, it is important to
take data intervals into account. Data from 1996 to 2008 (13
years) were used. The hydrological and meteorological data
were collected daily, while other (field measured) data were
sampled weekly (at Mulgeum over most of the period) or
biweekly (elsewhere). To provide consistency, longer-interval
data were linearly interpolated to a daily scale.

IV. M ODELS AND METHODS

A. The Process Model

The overall process model we use as a starting point
consists of two parts: a river flow model (hydrological
processes), and an algal growth model (biological processes).

1) The River Flow Model: uses a simple flow mass
balance between stations. This is used to estimate the flow
time between stations, and thus to provide time information
to the biological process (algal growth) model. Propertiesof
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the water flowing through each station are predicted from
earlier data for its upstream stations. Hydrological properties
like flow rate are estimated based on hydrological processes.
Assuming water flows from station A to station B, flow at
station B can be estimated from equation 2.

FB,t+d = (1− rA)FA,t + rBFB,t +R (2)

FX,t denotes the flow at station X at timet, while d is the
time it takes for water from A to reach B. It can be calculated
from the flow velocity, which in turn depends on the flow
rate. River flow is not laminar; we have to take into account
the lower rate of flow at the edges, water that may be trapped
in side pools etc. We do this by considering the water to be
divided into two portions: one portion subject to laminar flow,
and the other which is retained in the river reach till the next
time period.rA is the retention ratio of station A, meaning
the proportion of water that does not flow out of the station
in a given time period. This value also depends on the flow
velocity. R is the amount of water added by rainfall – of
course, it depends on the rainfall and the catchment area of
each station. To summarise, the flow rate at a certain time
is sum of flow rates of water from the upper station, from
previously retained water, and from runoff from rainfall.

2) The Algal Growth Model:models the simultaneous
process of algal growth in the flowing water. The algal
biomass changes according to the algal growth model, which
can be approximated by equations 3, 4 and 5.

dChl
d t

= Chl · (µ− γ − δ) (3)

µ = f1(L, T,N) (4)

γ = f2(T ) (5)

Equation 3 relates the rate of change of algal biomass
(Chl) to the growth rate (µ), respiration rate (γ) and mortality
rate (δ). The growth rate is determined by the average light
level L, temperatureT and nutrient concentrationsN. The
respiration rate depends on water temperature, and mortality
is assumed constant. In lake models, there is also a sink, loss
due to settling; flow turbulence in rivers renders this process
unimportant. To simplify the model at this initial stage, we
also omitted any mechanism for predation.

3) Integrating the two Models:The simulation must take
into account several water flows merging into one. The water
arriving at station S5 is the result of merging water flows
from S6 and T3. To simplify the computational model, virtual
stations have been added at each junction. Thus instead of
water flowing from S6 and T3 directly to S5, it first flows
to a virtual station J3, where the two flows are merged, then
the merged flow propagates to station S5.

Merging water flows is straightforward. Some properties,
such as flow, can be simply added together, while others, such
as water temperature or algal mass per liter, are calculated
as averages weighted by flow rate.

4) Validating the Flow Data:The flow model has another
role: providing a cross-check on the flow data we obtained
from WAMIS model through mass balance: since the flow
into a reach should roughly equal the flow out. There may
be additional effects, especially due to the abstraction and
return of water for the city of Daegu; by our calculations
these effects should not affect the lowest flows by more than
10%. Using the original flow formulae supplied by WAMIS,
the mass balance over the whole period, and over all reaches,
was out by an average of 73.1%! There is no possibility
that such a huge volume of water could be lost from a river
like the Nakdong. The flow figures must be wrong by at
least this amount. Working backward with the WAMIS data
and formulae, using the known occurrences of typhoons,
our domain expert constructed regression formulae reducing
this imbalance to 55.3% – still unacceptable, but sufficient
that we should see some improvement in our algal growth
predictions if the flow errors substantially affect the outcome.

5) The Overall Model:To summarise, all measured data
from the four highest stations (one main channel: S6 and
three tributaries: T1, T2 and T3) were used as sources to
calculate values in downstream stations. In estimating flow
rates, they were recalculated at the confluence where the
tributaries joined the main channel, then propagated to the
next reach. We paid particular attention to the retention ratio
for the flow in each reach, calibrating it to changes in flow
velocity, because water retention – and the consequent longer
residence times – may play a key role in algal growth,
especially in highly regulated rivers like the Nakdong [18],
[21]. We anticipated that increases in retention time might
accelerate algal blooms during the peak (dry, Winter) periods.

Although the primary process functions can be expressed
simply as equations 2 and 3, the secondary processes in-
corporate a variety of combinations of variables and con-
stant parameters. These parameters were derived from both
river [9], [22] and lake [23], [24] process models. However
the parameters of the model can be fitted to the system’s
environmental characteristics. Thus we applied a genetic
algorithm to the Nakdong River model to find a well-fitted
process revised by parameter optimisation.

Testing the model requires fixing a simulation interval.We
used a constant interval of 36 hours. Properties of the waterat
each station were estimated every 36 hours over the 13 year
time span. This is a necessary trade-off. Assuming the model
is reasonably good, a shorter time interval may give a more
accurate result, but the simulation will also be slower. When
it is incorporated into the evaluation loop, this is a critical
issue. So far, 36 hours seems to give reasonable results.

B. Parameter Optimisation by Genetic Algorithm

We optimised the model parameters using a canonical ge-
netic algorithm (GA). The gene structure is an 18-dimension
real vector, representing the 18 model parameters. Whenever
the fitness is required, parameters are substituted into the
river model and the model is run; the fitness is the overall
error of the model over the period. The genetic operators
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were tournament selection (size 4), uniform crossover and
gaussian mutation. Preliminary testing was used to find
suitable parameter settings. In particular, we found the best
results with a high mutation rate. We used an elite of one.
Table II shows the evolutionary parameters in detail.

TABLE II

EVOLUTIONARY PARAMETERS FORGENETIC ALGORITHM

GA Type canonical genetic algorithm
Max GenerationGmax 500
Population Size 100
Elite Size 1
Selection Tournament, size 4
Xover Uniform Crossover (pc = 0.6)
Mutation Gaussian Mutation (pm = 1.0)

V. M ODEL RESULTS

A. Predefined vs. evolved process model

Our first experiment compared the results we could expect
from a traditional process-based approach, with parameters
based on expert opinion combined with lab experiments, with
what could be achieved by GA parameter optimisation. The
results are shown in figures 2 and 3.

Before we discuss them in detail, we note some important
issues regarding Chlorophylla concentration. The peaks are
of most interest, since low algal levels pose no problem.
There is clear evidence of seasonality and recurrent variation
in time scale, but magnitude and timing of onset were
irregular (Figure 2). As a long term trend, algal blooms were
more severe during the 1990s, with peaks moderating since
2002. Algal blooms occurred most commonly in the Winter;
but on the few occasions when they did occur in Summer,
peak concentrations were much higher.

Figure 2 shows chlorophylla predictions based on ex-
pert/lab parameters. Prediction error was 38.76 (RMSE)
from 1996 to 2008. Overall, predicted values underestimated
blooms, and frequent fluctuations inconsistent with the data
were observed. Figure 3 depicts the process model after
tuning by GA parameter optimisation. This model gives a
prediction error roughly half (RMSE, 21.34) that of the pre-
defined model. More important in practice, though difficult
to quantify, it tracked the real peaks more accurately, even
when it did not precisely predict their scale. Parameter fitting
by GA, in this instance, gave much better model performance
than expert opinion and lab-determined parameters.

B. Model Performance and Flow Data

One potential source of error in the overall model is
error in the flow data. As we discussed in section III, our
cross-checking revealed serious inconsistency in the original
WAMIS flow data. Since the peaks in algal growth are highly
correlated with the troughs in flow, errors in these flow rates
could potentially seriously affect the model predictions.

To test the importance of flow error, we assessed the effect
of different flow data on the model. We fed both the original
WAMIS data, and our expert-corrected data, into the models

obtained from the GAs. We are reasonably confident that
the expert corrections resulted in more accurate flow data,
because of the reduction in mass balance inconsistencies.
The resulting prediction errors were 21.38 vs 21.34. Figure4
shows the resulting time-series algal dynamics, while figure 5
shows the time-series of relative error for flow rate (in terms
of mass balance) and for chlorophylla concentration (in this
context, the relative error is more relevant than the absolute
error). We can see that there is little correlation: the times
when the flow predictions are poor are essentially unrelated
to the times of poor chlorophylla prediction. From all these,
it appears that flow errors caused by river bed alteration do
not have a large effect on the errors of the algal growth model
(of course, this could change if subsequent work eliminates
other sources of error).

C. Cross-Validation for generality of the model

We used eight sets of training/test data (five years training,
with the subsequent year for testing) to estimate model
predictability. Table III shows the resulting accuracy on
training and test data. Despite large year-to-year variations
(some years are just more predictable than others), we see
generally reasonable results; it is particularly notable that the
first few years in our series – with large Summer blooms –
were particularly difficult for our models to fit. Overall, there
is no apparent evidence of overfitting. It is worth noting,
though, that lower RMSE was generally observed on test than
on training data. This may arise partly from the effect already
noted: that the earlier data may have been inherently less
predictable than the later. Unfortunately the usual methods
for handling such problems – ’leave one out’ cross validation
or bootstrapping – are not available to us because the data
must be input into the model process in consecutive order.

TABLE III

CROSS-VALIDATION

Year RMSE r
2 AME

Train 1996 - 2001 28.3 0.47 14.8
Test 2002 17.2 0.70 12.5
Train 1997 - 2002 25.5 0.54 12.7
Test 2003 21.4 0.56 11.9
Train 1998 - 2003 18.0 0.66 12.0
Test 2004 13.5 0.90 8.5
Train 1999 - 2004 16.0 0.78 10.7
Test 2005 17.4 0.75 11.3
Train 2000 - 2005 10.5 0.84 6.6
Test 2006 15.9 0.79 10.1
Train 2001 - 2006 13.4 0.89 7.3
Test 2007 13.4 0.89 7.3
Train 2002 - 2007 14.9 0.82 9.3
Test 2008 5.3 0.73 3.9

D. Performance Relative to Previous Nakdong River Mod-
elling

Our study is not the first to attempt prediction of al-
gal growth in the lower Nakdong. Two previous studies
used Recurrent Artificial Neural Networks [25] and Genetic
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Fig. 2. Chlorophylla, Actual vs Predicted (Traditional Process-Based Model)

Fig. 3. Chlorophylla, Actual vs Predicted (with GA Parameter Fitting)

Fig. 4. Chlorophylla Predictions, before and after Flow Modification



7

YEAR

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

R
el

at
iv

e 
er

ro
r 

ra
te

0.0

0.2

0.4

0.6

0.8

1.0
Chlorophyll a
Water flow

Fig. 5. Relative Error for Flow Rate and for Chlorophylla Concentration

Fig. 7. Decision Rules learnt by Genetic Programming, 1996-2008

Programming [13] to forecast chlorophylla concentration.
Although the latter was developed over a different time pe-
riod (1996-1998), it used the same environmental variables,
and is sufficiently simple that it can readily be re-applied
to our data. When it was extended to the period (1996-
2008) consistent with the new model, its RMSE was 32.41
(compared to 21.34). Figure 7 shows the performance over
this period. Lest it seem unfair to compare the model’s RMSE
outside the range for which it was developed, we note that its
RMSE over 1996-1998 was 37.46; figure 6 shows the detail.

VI. FUTURE DIRECTIONS

A. Relative Importance of Flow and Growth Model Error

A key issue for our future work, is where to concentrate
our effort to further reduce the error in our predictions. There
are two possible areas: the flow and growth models. Initially,
we thought the large errors in the flow model would be
important, so we should invest effort in that area. Substantial

improvements in flow data have yielded no improvement in
algal growth accuracy; other indications also suggest that
these errors may not be important. Why not, when the
primary difference between our model and others is the
incorporation of flow? We suspect this may be because large
errors in flow are tied to high flows; but when these flows
occur, the algal model correctly predicts near-zero values
(because of flushing effects), thus resetting the error. Thus
although large errors remain in the flow data, it seems this
should not be the main focus of our work. However it remains
an option, since improvements in the algal growth model
could reinstate the flow model as a major source of error.

B. Model Revision of the Growth Model

Although we have described the work as using a simple
GA to fit parameters of the model, this is only part of the
story. However, the parameters are just one part of a larger-
scale model, to which we plan to apply model revision
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Fig. 6. Decision Rules learnt by Genetic Programming, 1996-1998

through a grammar-based GP system [26]. The grammar
describes not only the process model, but also a space of
possible modifications to the model, deeply embedding our
environmental expert’s knowledge of the most likely places
where the process model might need adjustment. This will
form the next stage of our research, aiming to optimise not
merely the parameters, but also the structure, of the process
model, and to do so in ways which allow for the paucity of
data at our disposal.

VII. C ONCLUSIONS

The results of the project so far are:
• Confirmation that combining process-based methods

and evolutionary methods can improve prediction.
• A substantially better predictive model than was pre-

viously available from pure data mining approaches –
not only more accurate, but more usefully accurate,
in accurately predicting the timing and scale of algal
blooms in almost all cases.

• An overall modelling approach that extensible beyond
the Nakdong catchment to a wide range of rivers.

Water quality problems are a major global issue. Effective
use of water resources in the face of conflicting demand is
crucial to future economic, social and environmental wellbe-
ing. A flexible and predictive river model could support water
resource management across the globe. However designing
and developing accurate models is generally difficult and
expensive – so difficult that it is not often achieved. The
combination of evolutionary methods with expert knowledge
has enabled us to explore the search space much more rapidly
than either could alone.
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