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Abstract— Water quality is an important global issue, re- an interplay between algorithms and expert knowledge that
quiring effective management, which needs good predictive would be difficult to duplicate with competing methods.
tools. While good methods for lake water quality prediction Algal blooms are not unique to Korea. Rivers around

have previously been developed, accurate prediction of rer h Id bi . ina d | d aloal
water quality has hitherto been difficult. This project combines the world are subject to increasing development, and alga

process-model and data mining approaches through evolu- blooms have become a major concern in many countries.
tionary methods, resulting in tools for more effective wate  The models we are developing for the Nakdong are designed

management. Although the work is still in its preliminary stages, around specific knowledge of the ecological setting of that
error rates of the predictive models are already around half . ar and the data available for it. but the overall teclueis|
those resulting from representative applications of eithe pure ’ | d be ad d’ . Idwid
process-based or pure data mining approaches. are general, ar] can be _a apted to rlver_ sy_stems WF” wide.
In the remainder of this paper, we will first (section II)
describe what has previously been done in modelling algal
I. INTRODUCTION blooms in lakes and rivers, and discuss some of the available
gechniques. Section Il follows with a more detailed dgscri
major river systems of North East Asia. It drains an aregon of Fhe mO(_jelllng pro_bl_em and of the data sources avail-
able, with section IV outlining the methods we are using and

home to around ten million, including the million-strong .
. . . how we plan to extend them. Section V presents the results
city of Daegu, and at its mouth forms the primary water

supply for Busan, a city of five million. Such intensive us of the modelling so far, comparing it with previous work.

inevitably leads to conflicting requirements, a key issuadpe ewe discuss our future plans for the project in section VI,

the problem of algal blooms, fueled by the nutrients inje!cte.conCIUdIng in section VIl with a summary both of the work

upstream, which periodically blight the river in the vidinof itself, and of the role of evolutionary computation.
Busan. So important is the management of this river that the
Korean government is preparing to invest in the vicinity of Il. BACKGROUND
$US30 billion in a scheme to improve its water managemeng. Ecological Modelling

But management requires information. It is impossible to
manage a river effectively without an understanding of th
effects of management decisions. In the case of algal blpo

The Nakdong River system in South Korea is one of th

An ecosystem can be compared to a living system in com-
lexity. It is subject to internal feedback mechanismseoft

hi . del of the off f both uhknown and sometimes chaotic; it changes over time, with
this requires a model of the effects of both manageme e influence of different components waxing and waning. A

changes — e.g. decisions on water release from dams, . : .
9 9. IgFge open system like a river not only contains numerous
controls on nutrient release — and of exogenous changesfn—

o - . ternal components, but is also affected by unpredictable
e.g. changes in rainfall levels and timing as a result of aten L
. . external forces, both natural (e.g. weather variationg) an
change. Currently available models are unsatisfactory.

. o . _ anthropogenic (land use changes, dams and barrages etc.).
This project is using evolutionary methods to generate b he complexity is far beyond what we can hope to model, so
ter models of the algal dynamics of the catchment. The wor '

i currently in proaress. but has alreadv halved the prigdict odels can only approximate the most important influences.
error of ?/evicf)uslg ut;lished models yWe are re cF))rtin o On the other hand, data for building good models is
it now t(F)) documgnpt) what has been.achieved apnd alio ften scarce. Some kinds of ecological data can be cheaply
iIIustra'te how the flexibility of evolutionar metho,dss %thered, e.g. from satellites or automated stations. But
y y pps much essential data can only be gathered by painstaking
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parameters. Unfortunately such approaches often revkal djrowth (in most such cases, there is no algal problem, so
ficulties in practice. The expert’s knowledge may be wrongjo need for a model). In the cases of interest, such as the
experimentally-derived parameter values may be subject Makdong River, the situation lies between these extremes.
unknown variation "in the wild”, and so on. Data collection is also more difficult. Monitoring and sam-
An alternative approach uses machine learning methogfe measurement are needed in widely separated locations
to build models from data. But in many circumstances {by comparison with typical lakes), so that good-quality
such as our water modelling domain — this also suffers fromlata is less available. Determining the flow may itself be
problems. The available data is simply not sufficient toifust problematic. Fitting the mass balance may face unpredetab
a model of the complexity required for accurate predictionwater loss and discharge (e.g. illegal intake and dumping,
1) Model Revision: This dilemma, that process mod-ground water loss, evaporation, etc). As a result, rivereod
els based on prior knowledge may be too inaccurate, yate much less developed at this stage than lake models.
there may be insufficient data for machine learning, can be The most general and best-known process model in river
resolved in another way: through model revision. In thigcosystems is QUAL2E [8], which has been widely used
method, the problem is not to generate a model de novtm simulate dissolved oxygen under steady flow conditions.
but to learn revisions to an existing model. Thus the datdowever, application has revealed many inaccurate simu-
may be used to build a model more complex than coulhtions in different river ecosystems. Extensions havenbee
be justified by it alone, yet more accurate than one basedade to handle specific conditions, but were mostly designed
on an a-priori model. In a sense, this is a generalisatidn deal with specific physicochemical issues. When the com-
of a widely used approach, using learning methods to fiflexities arose from biological interactions, in many cage
parameters in a pre-built model. it has had limited apglicat was not accurate enough to use. Conversely, such models
in ecological modelling; Todorovski and Dzeroski [1], [2]could be extended with more reasonable simulation results
implemented equation revision using the equation disgoveby considering additional biological components [9], [10]
system LAGRAMGE, and illustrated its effectiveness by At the opposite extreme, it is possible to take a pure data
improving a pre-exisisting model of the net production ofmining approach similar to those successfully applied ke la
carbon in the Earth ecosystem. However LAGRAMGE usemodelling, in the hope that variables available to the model
complete search of the space of possible modificationsjay supply surrogates for the unavailable information abou
evolutionary methods may be better suited to this processflow and upstream conditions. This was the approach taken
by Kim et al. [11], [12] and Cao et al. [13] in previous
attempts to model algal growth in the Lower Nakdong River,

B. Water Quality Modelling i y ) ,
_ o by learning respectively nonlinear mathematical modets an
1) Modelling Water Quality in Lakes:Lakes are the decision rules predicting the chlorophylllevel.

simplest environments for modelling water quality proesss 3) Modelling Water Flow: River flow modelling is im-

While many water resource agencies still rely on manuallys, 5t hecause timely information may allow better man-
constructed process models, machine learning methods hay@ ment, whether it be for better control of water flows
demonstrated somewhat enhanced performance. Wh|ghﬂ{na regulated rivers, or more timely evacuation in the
and Recknagel [3] used Context Free Grammar GeneliGent of flooding. There have been many applications of
Programming (CFG-GP) to adapt the lake model SALMOg4ming methods to these problems, emphasising timesseri

while Cao et al. [4] optimised the parameters of the closelysyeiction in rainfall-runoff modelling [14], [15], andation-
related SALMO-OO using an evolutionary algorithm. Liuy, giaion velocities and level relationships in relatitm

gnd Yao [5] directly evolved neural network models predictﬂooding [16]. Solomatine [11] presents a range of other
ing algal growth, and Welk et al. [6] forecast algal popuygpications of learning methods to flow-related predittio
lation dynamics in freshwater lakes using an evolut|0na%ain|y in flood control.
algorithm. Recknagel et al. [7] compared time-series algal
predictive models developed by artificial neural netwonkd a
genetic algorithm in freshwater lakes. o )
2) Modelling Water Quality in RiversA river ecosystem A. Description of the Study Sites
introduces much greater complexity for modelling water The Nakdong is the longest river in South Korea (ca. 525
quality. Most notable is the importance of flow. Whilekm), with approximately ten million people living in and
water quality may be modelled locally in a lake, in a riverusing water from the basin. The annual rainfall is nearlyd.20
the determinants of water quality are heavily affected bynm per year, over 60% concentrated in the Summer monsoon
flow. Taking our example of algal growth, both the alga€June to September) [17]. Four large multi-purpose dams are
themselves, and the nutrients on which they depend, asited in the head streams to control flow, which is highly
carried with the flow. But we can’t concentrate purely on theegulated. Near the mouth, an estuarine barrage protezts th
flow either, because the algae grow as they are transportéesh water from salt intrusion, thus increasing the reside
In effect, we have two extremes: in the zero-flow case (i.e.t#me of the water body, creating what, in some flow states can
lake) we may pay attention simply to an algal growth modebe lake-like conditions [18]. The large population of Busan
at the opposite extreme, in a high flow river, we may ignorenetropolitan city draws a huge intake from the river. The

IIl. THE MODELLING PROBLEM



combination of these circumstances has led to a deteoratiof the river bed changes; this change is generally slow, but
of water quality in the lower Nakdong River, resulting in apunctuated at irregular intervals by the silt carried in the
proliferation of recurrent algal blooms. extreme flows from typhoons (for which we know the dates),

We have data from nine measuring stations throughoand more rarely, by dredging (for which we do not). The
the catchment (see Figure 1). They were originally selectdiiting parameters are tuned by WAMIS at irregular interyals
based on the availability of data and geographical imponot coincident with events affecting the river contours, by
tance. Six stations (S1 to S6 from lower to upper) are locatedeasuring actual flows over a period of a few months, then
in the main channel of the river, while the other three stetio calibrating the regression constants. In addition, WAMIS’
(T1 to T3, see Figure 1) are situated in major tributaries. Qhain purpose is biased toward flood prevention (i.e. high
those stations, algal concentration in the lowest (Mulgeurflow) rather than water quality (low flow); thus flows are most
S1) is most important because the high population (ca. fiveften measured during high flow, and the models fitted to
million) of Busan draws its water nearby. To predict the Algaminimise error at these times. Disparity between these, data
biomass at this station is the underlying task of our modelespecially in low flow seasons, might have a large impact on
algal concentration in the water model.

Irradiance and rainfall data were provided courtesy of the
Korea Meteorological Administration (also available from
the KMA website [20]). Catchment areas were derived
from electronic map data. Water temperature and dissolved
oxygen were manually measured at each station. Nutrient
concentrations (nitrate, phosphate and silica) and cplorib
a concentration were analysed and measures in the laboratory
from field-collected water samples. Generally, algal bissna
was directly related to chlorophydl concentration, hence it
was predicted using chlorophydl in this paper.

TABLE |

VARIABLES

Variable Unit
Geographical catchment area km?

water level M
Hydrological flow velocity m/s

flow rate m3/s
Meteorological irradiance MJ/m?*

rainfall mm/day

water temperature °C
Physicochemical| dissolved oxygen @ mg/l

nitrate NG mg/|

phosphate PO mg/l

silica SiO, mg/l
Biological chlorophyll a ngll

Fig. 1. Nakdong River Basi - :
9 akdong Fver Basin In building a time-based model from data, it is important to

take data intervals into account. Data from 1996 to 2008 (13
years) were used. The hydrological and meteorological data
were collected daily, while other (field measured) data were
For construction of the model, we have a total of twelvgampled weekly (at Mulgeum over most of the period) or
different types of variables and parameters (Table I). Mogfiweekly (elsewhere). To provide consistency, longegival
hydrological and meteorological data are derived from theata were linearly interpolated to a daily scale.
website of the Korean Water Management Information Sys-
tem (WAMIS [19]). Water levels are continuously logged
in each station. Flow rates are derived through a regression
formula based on the river height provided by WAMIS. The- The Process Model
formula generally has the form given in equation 1: The overall process model we use as a starting point
. consists of two parts: a river flow model (hydrological
Flow = o+ (Height+ )7 (1) processes), and an algal growth model (biological prosgsse
whereq, § and~ are site-specific (and time-specific) param- 1) The River Flow Model:uses a simple flow mass
eters that depend on the riverbed contour. balance between stations. This is used to estimate the flow
The flow data are particularly problematic, because thime between stations, and thus to provide time information
three parameters, 8 and~y change wildly when the shape to the biological process (algal growth) model. Properties

B. Data and Sources

IV. M ODELS AND METHODS



the water flowing through each station are predicted from 4) Validating the Flow Data:The flow model has another
earlier data for its upstream stations. Hydrological prtps role: providing a cross-check on the flow data we obtained
like flow rate are estimated based on hydrological processésom WAMIS model through mass balance: since the flow
Assuming water flows from station A to station B, flow atinto a reach should roughly equal the flow out. There may
station B can be estimated from equation 2. be additional effects, especially due to the abstractiocsh an
return of water for the city of Daegu; by our calculations
@) these effects should not affect the lowest flows by more than
10%. Using the original flow formulae supplied by WAMIS,

Fx . denotes the flow at station X at timewhile d is the the mass balance over the whole period, anq over al re_ag:_hes,
’ as out by an average of 73.1%! There is no possibility

time it takes for water from A to reach B. It can be caIcuIatet?]\fI .
at such a huge volume of water could be lost from a river

from the flow velocity, which in turn depends on the flow,. )
rate. River flow is not laminar; we have to take into accouri{ke the Nakdong. The flow figures must be wrong by at

%ast this amount. Working backward with the WAMIS data
the lower rate of flow at the edges, water that may be trappe .
nd formulae, using the known occurrences of typhoons,

in side pools etc. We do this by considering the water to b X . .
- : o . , : our domain expert constructed regression formulae reducin
divided into two portions: one portion subject to laminanflo

o o ar o
and the other which is retained in the river reach till thetne%ﬂ'jt 'VTSE;IEQSE tgegiir/r(:e iri[glr(?vla:;ﬁi?tiibl)eljrbzlajltg:lluglri)l\?vr:rt'l

time period.r4 is the retention ratio of station A, meanin - . .
P A .glri)redmtlons if the flow errors substantially affect the aunte.
the proportion of water that does not flow out of the statio :
5) The Overall Model:To summarise, all measured data

in a given time period. This value also depends on the flo . : .
velogty. R is thF:a amount of water addedp by rainfall — o}\fom the four highest stations (one main channel: S6 and

course, it depends on the rainfall and the catchment areatgfee tributaries: T1, T2 and T3) were used as sources to

each station. To summarise, the flow rate at a certain timcglculate values in downstream stations. In estimating flow

. . rates, they were recalculated at the confluence where the
IS sum of flow rates of water from the upper station, fron}ributaries joined the main channel, then propagated to the
previously retained water, and from runoff from rainfall. J . . ' propagateq
. next reach. We paid particular attention to the retentidio ra
2) The Algal Growth Model:models the simultaneous

. . or the flow in each reach, calibrating it to changes in flow
process of algal growth in the flowing water. The alg

: . -velocity, because water retention — and the consequengiong
biomass changes according to the algal growth mOdel'Wh'?Qsidence times — may play a key role in algal growth,

can be approximated by equations 3, 4 and 5. especially in highly regulated rivers like the Nakdong [18]
[21]. We anticipated that increases in retention time might

Fpiva=(1—ra)Fat+rpFp:+ R

dcnhl accelerate algal blooms during the peak (dry, Winter) mio

ar Chl- (=~ —9) ®) Although the primary process functions can be expressed
p = fi(L,T,N) (4) simply as equations 2 and 3, the secondary processes in-
v = fo(T) ) corporate a variety of combinations of variables and con-

stant parameters. These parameters were derived from both

ver [9], [22] and lake [23], [24] process models. However

Equation 3 relates the rate of change of algal bioma% . f th gel be fitted to th e’
(Chl) to the growth ratey(), respiration ratey) and mortality € parameters of the model can be Tied fo e systems
h?nwronmental characteristics. Thus we applied a genetic

rate ¢). The growth rate is determined by the average lig ) . ; .
level L, temperatureT and nutrient concentratior. The algorithm to the Nakdong River model to find a well-fitted
’ process revised by parameter optimisation.

respiration rate depends on water temperature, and nigrtal . . L . L
P P P ? Testing the model requires fixing a simulation interval.We

is assumed constant. In lake models, there is also a sirk, los ; )
due to settling; flow turbulence in rivers renders this pssce used a cqnstant mterv_al 0f 36 hours. Properties of the vater
unimportant. To simplify the model at this initial stage, Wee_ach station were estimated every 36 hours over the 13 year
also omitted any mechanism for predation. time span. This is a necessary trade-off. Assuming the model

. i . . is reasonably good, a shorter time interval may give a more

. 3) Integrating the two ModelsThe ;lmqlatlon must take accurate result, but the simulation will also be slower. Whe
mtq ‘."‘°°°“”t seyeral W&_lter flows merging |nt(_) one. The Wat(?tr is incorporated into the evaluation loop, this is a catic
arriving at station 5.5 IS _the result of merging water _flow ssue. So far, 36 hours seems to give reasonable results.
from S6 and T3. To simplify the computational model, virtua
stations have been added at each junction. Thus instead of
water flowing from S6 and T3 directly to S5, it first flows B. Parameter Optimisation by Genetic Algorithm
to a virtual station J3, where the two flows are merged, then We optimised the model parameters using a canonical ge-
the merged flow propagates to station S5. netic algorithm (GA). The gene structure is an 18-dimension

Merging water flows is straightforward. Some propertiesieal vector, representing the 18 model parameters. Wheneve
such as flow, can be simply added together, while others, suttte fitness is required, parameters are substituted into the
as water temperature or algal mass per liter, are calculateéder model and the model is run; the fitness is the overall
as averages weighted by flow rate. error of the model over the period. The genetic operators



were tournament selection (size 4), uniform crossover arabtained from the GAs. We are reasonably confident that
gaussian mutation. Preliminary testing was used to finhe expert corrections resulted in more accurate flow data,
suitable parameter settings. In particular, we found thet bebecause of the reduction in mass balance inconsistencies.
results with a high mutation rate. We used an elite of on&he resulting prediction errors were 21.38 vs 21.34. Figure
Table Il shows the evolutionary parameters in detail. shows the resulting time-series algal dynamics, while &gur
shows the time-series of relative error for flow rate (in term

of mass balance) and for chlorophylconcentration (in this
context, the relative error is more relevant than the altsolu

TABLE Il
EVOLUTIONARY PARAMETERS FORGENETIC ALGORITHM

GA Type canonical genetic algorithn error). We can see that there is little correlation: the §ime
Max GenerationG'maa 500 when the flow predictions are poor are essentially unrelated
Eﬁt‘;“'saitz'g“ Size 1Of to the times of poor chlorophydl prediction. From all these,
Selection Tournament, size 4 it appears that flow errors caused by river bed alteration do
Xover Uniform Crossover . = 0.6) not have a large effect on the errors of the algal growth model
Muttation Gaussian Mutationpn = 1.0) (of course, this could change if subsequent work eliminates

other sources of error).

V. MODEL RESULTS lidation f litv of th del
A. Predefined vs. evolved process model C. Cross-Validation for generalty of the mode

Our first experiment compared the results we could expectWe used eight sets of training/test data (five years trajning

from a traditional process-based approach, with parameté'}!r'g:jié?sbiﬁgbs_?_ggéml”y E;?]ro\fg ttﬁstlrgs?ultt?n esgg;itrzcmoodnel
based on expert opinion combined with lab experiments, wit{% Y- 9 y

what could be achieved by GA parameter optimisation. Th ;gmgg :2?5 tgrsé (.ja;?'mzfsp't:;;agg%Iﬁet?];f'gﬁ]aerrs\sanag see
results are shown in figures 2 and 3. y Ju predi » W

Before we discuss them in detail, we note some importaﬁF nerally reasqnable resglts; it is_ particularly notabi the
issues regarding Chlorophyll concentration. The peaks are]cIrSt few years in our series — with large Summer blooms —

of most interest, since low algal levels pose no problenwere particularly difficult for our models to fit. Overall,ghe

There is clear evidence of seasonality and recurrent v@miat IS no apparent evidence of overfitting. It is worth noting,
in time scale, but magnitude and timing of onset Weréhough,that lower RMSE was generally observed on test than

irregular (Figure 2). As a long term trend, algal blooms werg" training data. This may arise partly from the efiect aliea

more severe during the 1990s, with peaks moderating sinegted: that the earlier data may have been inherently less

2002. Algal blooms occurred most commonly in the Winterpredictable than the later. Unfortunately the usual method

but on the few occasions when they did occur in Summefror handling such problems — 'leave one out’ cross validatio

peak concentrations were much higher or bootstrapping — are not available to us because the data
Figure 2 shows chlorophyl: predicti&)ns based on ex- must be input into the model process in consecutive order.
pert/lab parameters. Prediction error was 38.76 (RMSE) TABLE IlI

from 1996 to 2008. Overall, predicted values underestichate
blooms, and frequent fluctuations inconsistent with thea dat

CROSSVALIDATION

were observed. Figure 3 depicts the process model after — 199\éear2001 ngEs 0227 AﬂES
; ieat ; ; rain - . . .
tunln_g .by GA parameter optimisation. This model gives a Test 2002 172 070 125
prediction error roughly half (RMSE, 21.34) that of the pre- Train | 1997 - 2002|255 | 054 | 12.7
defined model. More important in practice, though difficult Test 2003 21.4| 056 | 119
to quantify, it tracked the real peaks more accurately, even ran 1995062003 ig'g 8'88 1§'g
when itldid not precisely predict their scale. Parametendjtt Train 1 1999 - 20041 160 [ 078 | 107
by GA, in this instance, gave much better model performance Test 2005 17.4| 0.75 | 11.3
than expert opinion and lab-determined parameters. Train | 2000 - 2005 1051 0841 6.6
Test 2006 159 | 0.79 | 101

Train | 2001 - 2006] 13.4 | 0.89 73

B. Model Performance and Flow Data Test 2007 13.4 | 0.89 7.3
, i , Train | 2002 - 2007| 14.9 | 0.82 93

One potential source of error in the overall model is Test 2008 53| 0.73 3.9

error in the flow data. As we discussed in section Ill, our
cross-checking revealed serious inconsistency in thenalig
WAMIS flow data. Since the peaks in algal growth are highly . . .
correlated with the troughs in flow, errors in these flow rateS- Performance Relative to Previous Nakdong River Mod-
could potentially seriously affect the model predictions. ~ €!ling
To test the importance of flow error, we assessed the effectOur study is not the first to attempt prediction of al-

of different flow data on the model. We fed both the originaal growth in the lower Nakdong. Two previous studies
WAMIS data, and our expert-corrected data, into the modeissed Recurrent Artificial Neural Networks [25] and Genetic
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Fig. 7. Decision Rules learnt by Genetic Programming, 12068

Programming [13] to forecast chlorophyll concentration. improvements in flow data have yielded no improvement in
Although the latter was developed over a different time pealgal growth accuracy; other indications also suggest that
riod (1996-1998), it used the same environmental variablethese errors may not be important. Why not, when the
and is sufficiently simple that it can readily be re-appliegprimary difference between our model and others is the
to our data. When it was extended to the period (1996nAcorporation of flow? We suspect this may be because large
2008) consistent with the new model, its RMSE was 32.4érrors in flow are tied to high flows; but when these flows
(compared to 21.34). Figure 7 shows the performance oveccur, the algal model correctly predicts near-zero values
this period. Lest it seem unfair to compare the model's RMSEecause of flushing effects), thus resetting the errorsThu
outside the range for which it was developed, we note that itdthough large errors remain in the flow data, it seems this
RMSE over 1996-1998 was 37.46; figure 6 shows the detaghould not be the main focus of our work. However it remains
an option, since improvements in the algal growth model
VI. FUTURE DIRECTIONS could reinstate the flow model as a major source of error.

A. Relative Importance of Flow and Growth Model Error

A key issue for our future work, is where to concentratd®- Model Revision of the Growth Model
our effort to further reduce the error in our predictionsefién Although we have described the work as using a simple
are two possible areas: the flow and growth models. InitialfGA to fit parameters of the model, this is only part of the
we thought the large errors in the flow model would bestory. However, the parameters are just one part of a larger-
important, so we should invest effort in that area. Subi&thnt scale model, to which we plan to apply model revision
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Fig. 6. Decision Rules learnt by Genetic Programming, 19988

(7]
through a grammar-based GP system [26]. The grammar
describes not only the process model, but also a space of
possible modifications to the model, deeply embedding oufs]
environmental expert's knowledge of the most likely places
where the process model might need adjustment. This will
form the next stage of our research, aiming to optimise nof9]
merely the parameters, but also the structure, of the psoces
model, and to do so in ways which allow for the paucity Oflo]
data at our disposal.

VIlI. CONCLUSIONS [11]

The results of the project so far are:

« Confirmation that combining process-based method¥?!
and evolutionary methods can improve prediction.

« A substantially better predictive model than was pre-
viously available from pure data mining approaches 23!
not only more accurate, but more usefully accurate,
in accurately predicting the timing and scale of algal
blooms in almost all cases. (14]

« An overall modelling approach that extensible beyond
the Nakdong catchment to a wide range of rivers.  [15]

Water quality problems are a major global issue. Effective

use of water resources in the face of conflicting demand jsg)
crucial to future economic, social and environmental weellb
ing. A flexible and predictive river model could support wate
resource management across the globe. However designing
and developing accurate models is generally difficult and7]
expensive — so difficult that it is not often achieved. The
combination of evolutionary methods with expert knowledge
has enabled us to explore the search space much more rapidg
than either could alone. [t
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