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Abstract-

Genetic Programming (GP) plays the primary
role for the discovery of programs through evolv-
ing the program’s set of parse trees. In this pa-
per, we present a new technique for construct-
ing programs through Ant Colony Optimization
(ACO) using the tree adjunct grammar (TAG)
formalism. We call the method AntTAG and we
show that the results are very promising.

1 Introduction

To date, Genetic Programming (GP) has played the pri-
mary role for the discovery of programs. GP and related
systems are characterized by their use of a program-—
like representation, often a program structure tree; and
their use of evolutionary search as the mechanism for
exploring the search space. Variations of GP systems
have been suggested in the literature including grammar
guided GP (GGGP) (Whigham 1995) and grammar evo-
lution (GE) (Lucas 1994). All these methods however,
are generative methods; that is, they generate solutions
by combining (eg. crossovering) or modifying (eg. mu-
tating) other solutions. Generative methods have their
strengths; including their ability to maintain building
blocks (Poli and McPhee 2001). Notwithstanding, they
do not provide adequate information about the distribu-
tion of the search space, they are unable to adapt easily
in a changing environment, and most of the time the
genotype—phenotype mapping is one to one. In GP for
example, a small change in the genotype may have a
dramatic impact on the phenotype.

Ant colony optimization (ACO) is a constructive
method; that is, it constructs a solution through a se-
quence of transitions guided with some information -
which in the case of ACO is the pheromone matrix. This
information is represented as a sort of joint probability
matrix and learnt throughout the run by exploring the
search space. The pheromone matrix in ACO can be
seen as the genotype and being a probability distribution
matrix, it can easily adapt in a changing environment.
A probability matrix allows a one—to—many genotype—
phenotype mapping. This paper presents a first attempt
to construct programs using ACO as a constructive tech-
nique. We named the method AntTAG.

The paper is organized as follows: background materi-
als are in Section 1.1 followed by the proposed algorithm
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in Section 2. Experiments are presented in Section 3 and
conclusions drawn in Section 4.

1.1 Background Materials

In this section, we introduce ant colony optimization as
the primary technique for AntTAG. We then introduce
grammar guided genetic programming followed by an-
other formalism — tree adjunct grammar. We will then
discuss how to adapt that formalism to ACO.

1.2 Ant Colony Optimization and Genetic Pro-
gramming

ACO (Dorigo and Caro 1999) is a branch of swarm intel-
ligence, a field that studies “the emergent collective intel-
ligence of groups of simple agents” (Bonabeau, Dorigo,
and Theraulaz 1999). In insects which live in colonies,
such as ants and bees, an individual can only do simple
tasks on its own while the colony’s cooperative behavior
is a core reason behind the intelligent behavior it shows.

Real ants are blind or near-blind. However each ant,
while walking, deposits a chemical on the ground called
a pheromone (Dorigo and Caro 1999) that guides future
ants. In a couple of experiments presented in (Dorigo,
Maniezzo, and Colorni 1996), the complex behavior of
ants is demonstrated. ACO has been applied in many
domains where it showed promising results (Dorigo and
Caro 1999; Gambardella, Taillard, and Dorigo 1999).
However ACO has not, to our knowledge, been success-
fully used to evolve programs.

ACO imitates the natural behavior of ants by con-
structively building a solution to the problem. The parts
of the solutions are considered as the states of the system
and the connections (arcs) between the parts as the tran-
sitions. At the start of a typical run, an equal amount
of pheromone is deposited on all the arcs. A solution
is built by visiting the states sequentially. The choice
of the next state is based on the amount of pheromone
deposited between the current state and all possible sub-
sequent states. Each time a transition is made between
two states, the pheromone level increases on the arcs
connecting these two states; therefore, increasing the
possibility that this transition will be made in the fu-
ture. The amount of pheromone increase on each arc
increases as the quality of the constructed solution in-
creases. Pheromone also evaporates and the process is
repeated for some fixed number of cycles.
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At the first attempt, we experienced some difficulties
in using ACO for constructing programs. We found that
ACO exhibits some characteristics which make it difficult
as a potential search algorithm for the search spaces used
in conventional GP systems.

1. The relatively large, and loosely bounded, tree
size used in classic GP leads to an unbounded
pheromone table in the ant colony representation.
A solution to this point could be to place an up-
per bound on the tree, but still, the pheromone
table will be very large; hence the algorithm may
experience a very slow convergence rate.

2. The folklore emphasize on the importance of struc-
ture preservation in Genetic Programming has
been validated in recent years by a series of GP
Schema Theorems (Poli and McPhee 2001). It is
difficult to see how to apply ant colony optimiza-
tion to the standard GP program representations
in structure-preserving ways.

3. To use ACO, a fixed graph representation is needed
before hand to construct the parse tree. It was not
obvious what this graph should be.

Recently, we came across a formalism in natural lan-
guages known as Tree—adjunct grammars (TAGs) (Joshi,
Levy, and Takahashi 1975). We found that it can be
more easily combined with ACO than the conventional
parse tree can be used in GP. Actually, any linear rep-
resentation of the parse can be used for ACO. However,
we decided to use TAGs to build upon our current work
using TAGs as a powerful representational language for
GP. The language of TAGs goes beyond the conven-
tional GP representational languages that are restricted
to context—free grammar.

1.3 Grammar Guided Genetic Programming

Classic Genetic Programming evolves a program struc-
ture tree. A number of deficiencies with that representa-
tion led to the introduction of Grammar Guided Genetic
Programming (Whigham 1995) (GGGP). In GGGP, the
genotype is not the program structure tree itself, but
rather a parse tree within the grammar. The corre-
sponding program structure tree may be read off from
the leaves of the parse tree. GGGP has a number of
advantages, both in problem representation and search
space restriction, and in the greater degree of context
preservation provided by the parse tree.

1.4 Tree Adjunct Grammar

Tree—adjunct grammars (TAGs) are tree-rewriting sys-
tems. They were first introduced in (Joshi, Levy, and
Takahashi 1975). More recently, the theoretically redun-
dant but practically convenient operation of substitution

has been added; the resultant grammars are known as
tree-adjoining grammars. Tree-adjoining grammars have
been used successfully in natural language processing;
and a comprehensive survey of TAGs can be found in
(Joshi and Schabes 1997). A tree-adjunct grammar can
be defined as follows (Joshi, Levy, and Takahashi 1975):

Definition 1: A tree-adjunct grammar comprises of
5-tuple (T, V, I, A, S), where

1. T is a finite set of terminal symbols.

2. V is a finite set of non-terminal symbols; and
TNV =29.

3. S € V is a distinguished symbol called the start
symbol.

4. I is a finite set of finite trees called initial trees.
An initial tree is defined as follows:

e The root node is S.

e All interior nodes are labelled by non-—
terminal symbols.

e Each node on the frontier is labelled by a ter-
minal symbol.

5. A is a finite set of finite trees called auxiliary trees,
which can be defined as follows:

e Internal nodes are labelled by non-terminal
symbols.

e A node on the frontier is labelled by a termi-
nal or non-terminal symbol.

There is a special non—terminal node on the frontier
called the foot node. The foot node satisfies an ad-
ditional requirement: it must be labelled by the same
(non-terminal) symbol as the root node of the tree. We
follow the convention in (Joshi and Schabes 1997) to
mark a foot node with an asterisk (*).

The trees in E = I'|J A are called elementary trees.
In the literature, initial trees and auxiliary trees are usu-
ally denoted a and ( respectively; and a node labelled
by a non—terminal symbol (resp. terminal symbol) is
sometimes called a non-terminal (resp. terminal) node.
An elementary tree is called X—type if its root is labelled
by the non—terminal symbol X. The operation in a tree-
adjunct grammar is the adjunction of trees. Adjunction
can build a new (derived) tree g from an auxiliary tree
0 and a tree « (initial, auxiliary or derived). If tree «
has a non—terminal node labelled A and 3 is an A-type
tree then the adjunction of § and « to produce g is as
follows. First, the subtree a1 rooted at A is temporarily
disconnected from «. Next, § is attached to « to replace
this subtree. Finally, «; is attached back to the foot
node of 3. g is the final derived tree achieved from this
process. Adjunction is illustrated in Figure 1.



Figure 1: Adjunction in tree adjunct grammar.

The tree set of a TAG can be defined as follows (Joshi,
Levy, and Takahashi 1975): Tg = {t|t is completed and
t is derived from some initial trees }, where a tree t
is said to be completed if ¢ is an initial tree and ¢ has
no non-terminal node on its frontier. The language L¢g
generated by a TAG is then defined as the set of all
yielded trees in Tg. Lg = {w € T*|w is the yield of
some tree t € Ti;}.

The set of languages generated by TAGs (called TAL)
is a superset of context-free languages; and is properly
included in indexed languages (Joshi and Schabes 1997).
More properties as well as different types of TAGs can
be found in (Joshi and Schabes 1997). One special class
of tree-adjunct grammars (TAGs) is lexicalized tree—
adjunct grammars (LTAG) where each elementary tree
of a LTAG must have at least one terminal node (called
anchor). It has been proven that for any context—free
grammar G, there exists an LTAG Gy, that generates
the same language and tree set as G (G, is then said
to strongly lexicalize G).

1.5 Tree Adjunct Grammar Guided Genetic Pro-
gramming

Tree Adjunct Grammar Guided Genetic Programming
(Hoai and McKay 2001) (TAG3P) is different from
GGGP in that we use context—free grammars along with
lexicalized tree—adjunct grammars of which the deriva-
tion structure is of the form af(a1)Bs ... Bn(ay) as for-
malisms to set a language bias for genetic program-
ming, where n is an arbitrary finite natural number;
a,Bili = 1,2,...,n are elementary trees of the tree ad-
junct grammars, aplh = 1,2,...,n are node addresses
where adjunctions take place. The order of adjunction
is the right—to-left order.

The phenotype in TAG3P is the structure tree of the
derived program (ie the genotype of standard GP), ob-
tained after first generating the parse tree within the
context free grammar (ie the genotype in GGGP). The
TAG3P genotype is the derivation sequence for this parse

tree in the corresponding tree adjunct grammar. One of
the main advantages of TAG3P is its linear genotype
which helps to reduce the bias, which GGGP suffers, of
selecting non-terminal nodes toward the leaves for ge-
netic operations. Other intuitive advantages of TAG3P
can be found in (Hoai and McKay 2001).

2 AntTAG: A new paradigm

2.1 Motivation

When problem spaces are represented in the restrictive
LTAG (adjunctions at the leaf have the same label) for-
mat, the resultant parse trees are typically far simpler
than the corresponding genotypes in either standard ge-
netic programming or in the context free grammars pre-
viously used for Grammar-Guided Genetic Programming
(Whigham 1995) (GGGP). For all problem spaces we
have investigated so far, we have been able to find a
TAG grammar in which the restrictive linear parse trees
covered the entire search space. We are currently trying
to delineate the set of problems which are covered by the
restrictive linear TAG parse structures, but it is clearly
very large. Thus the use of linear TAG as a representa-
tion medium does not in practice seem to restrict the set
of problems which can be handled. However these issues
are currently under detailed investigation.

Given these characteristics, it is straightforward to
design an ant algorithm to search the space (see below).
However the data structure uses only a one-step joint
probability distribution (pheromone matrix), hence can-
not conserve larger schemata. However it is straight-
forward conceptually to preserve a greater amount of
contextual information in the pheromone data structure
where context appears to be important.

The use of ACO for evolving programs is more adap-
tive than traditional approaches. GP faces a number of
problems; changing the genotype slightly (for example
changing the root of the tree) can have a great impact on
the phenotype. Also, a change in the environment may
need the re-construction of the program. Using ACO as
the base to construct the tree offers many advantages,
including the ability to quantify the relative importance
of a structure through the pheromone table, which in
turn provides the ability to adopt easily to a changing
environment.

2.2 Problem Representation

A solution in TAG3P is a one—dimensional array with a
sequence of oo and (3 trees. For a tree to exist in a lo-
cation 1, it must be compatible with the tree in location
i — 1. Sometimes, a tree has more than one address (ad-
joint point). In this case, we need to define the address
to use. A table (known as the adjunct table) is created
which lists the destination tree, source tree, and the ad-
dress through which the source will link to the destina-



tion. To build up a valid solution, the process is simply
to make sure that an entry exists in the adjunct table be-
tween the source tree and the destination. The adjunct
table represents an enumeration of the valid transitions
and therefore represents the set of hard constraints in
our problem. A solution is therefore represented with
a sequence of integers, where each integer is a row in-
dex in the adjunct table. The following is an example
of a trivial grammar, a possible chromosome, and the
chromosome’s parse tree.

Example 1 Let us assume a simple grammar as
follows:

Exp — Var | Op,Exp (1)
Var — X (2)
Op — sin|cos (3)

Figure 2 presents the equivalent tree adjunct gram-
mar. One may think that the two grammar representa-
tions are equivalent. In fact, the TAG grammars include
the CFG. Now, let us assume a possible typical chro-
mosome in our representation. « (1 01 B2 (1
The parse tree of this chromosome is given in Figure 3.

T 1F| Ea
Exp Exp E!(p
Vél’ /\

| S5in Exp™ Cos Exp™
X

Figure 2: The tree adjunct grammar of Example 1.
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Figure 3: The parse tree of Example 1. The function is
sin(cos(sin(sin(X))))

In the previous example, it is important to clarify that
genetic operators on the linear representation exhibits a
very different effect than conventional genetic operators

in GP. Mutating (5 in the previous example to (1, in ef-
fect, changes an internal sub—tree of the parse tree. This
is not conventional in standard GP. Crossover is also less
biased here than conventional GP (the reader may refer
to (Poli and Langdon 1998) for a comparison between
the crossover in GP and in GA representations). In ad-
dition, truncating any part on the right hand side of the
chromosome will still produce a valid tree, as long as the
original chromosome is a valid tree, without any need to
re-introduce terminal symbols. Moreover, one can now
undertake multi-point crossover on this representation.
Last but not least, it is clear that this representation
preserves building blocks. In the following section, we
shall introduce our pheromone table’s representation.

2.3 Pheromone Table Representation

The problem naturally uses a graph representation. As
mentioned, each row in the adjunct table represents a
valid transition between two trees.

Example 2 Figure 2.3 shows the graph for some ar-
bitrary « and (3 trees. Here, we have two « trees and
six 3 trees. We notice that there are two groups of 3
trees; 31, (2, B3 and B4, B5, B6. We can see that the first
group cannot be joined to the second. In addition, a;
can only be joined by the first group and «s by the sec-
ond. This graph depicts the set of syntactic constraints
in the problem. Each arc in the graph is represented by
a number of entries in the adjunct table.

Figure 4: Valid transitions in TAG.

The pheromone table, 7, is therefore a two—
dimensional table with one dimension of length equal
to the total number of trees and the second dimension
represents the total number of entries in the adjunct ta-
ble where the tree appeared as a destination tree. There
is an extra element in the second dimension that is used
as a termination symbol. This symbol enables the termi-
nation of building a solution at any locus in the solution
vector. An entry, 75, in the pheromone table is there-
fore the amount of pheromone deposited by the ants after
visiting the entry corresponding to the j* occurrence of



the tree ¢ as a destination in the adjunct table. We no-
tice that the columns of the matrix do not necessarily
have the same length since each destination may have a
different number of addresses.

A solution is constructed by selecting an alpha tree,
probabilistically based on its pheromone concentration,
then successively choosing a consecutive § tree based on
the relative transition probability from the normalized
pheromone matrix. If the chosen tree is a termination
symbol, the algorithm terminates building the solution.

2.4 Heuristic desirability

We use one—point crossover as our local search technique.
In a previous study by (Poli and Langdon 1998), the po-
tential of crossover as a local search operator was inves-
tigated. In AntTAG, after the generations of the ants,
crossover takes place k times between randomly selected
two ants to create two children that replace the original
ants if they are fitter. The pheromone table is then up-
dated with the resultant set of ants and the process is
repeated.

2.5 Constraint satisfaction method

The constructive algorithm builds up a solution using the
probabilistic choice rule while maintaining the feasibility
of the chromosome. Since each tree is attached only to
the valid transitions — as determined by the adjunct table
—in the pheromone matrix, a solution that is constructed
from the pheromone matrix is always a feasible one.

2.6 Pheromone updating rule

The pheromone updating rule uses pheromone evapo-
ration. The following equation represents the updating
rule, where p is the pheromone evaporation rate.

7ii (1) — px (1 = 1) + AT (1 — 1) (4)

The global pheromone update was the reciprocal of
the objective corresponding to the best ant.

1
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if tree 3
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0 otherwise
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iteration
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entry
iteration

(5)
The local pheromone update multiplies the
pheromone on the visited arc ¢j in iteration [ as

Tij(l) <—Tij(l)+,u XTij(l) (6)

The rationale of this local update is that the poten-
tial fitness of the chromosome is not known until the
solution is complete. Therefore, we cannot use the chro-
mosome fitness to guide the local pheromone update. In-
stead, we enhance all visited arcs in a single generation
by some small value based on the amount of pheromone
deposited on the arcs. In the global pheromone update,
the quality of the solution is used to enforce the amount
of pheromone on those arcs that generated the best solu-
tion. A good value for i in our experiments was found to
be 0.1%. The ACO probabilistic transition rule adopted
here is

()
"7 Then. D v

3 Experiments

3.1 Experimental Design

Symbolic regression is widely used as a test problem for
GP systems. The problem is to search for a function that
fits 20 randomly sampled data points from a polynomial
function that is taken in our case to be:

y=at+ 23+ 2%+ (8)

We generated 50 different dataset for this function.
For GGGP and TAG3P, a population size of 500 is run
for 30 generations. These values were found to be ap-
proximately optimal. For TAG3P, the crossover proba-
bility is 0.95 and the replacement probability is 0.05. For
GGGP, the crossover probability is 0.9 and the mutation
probability is 0.1. For TAG3P, mutation is not used as
it seems that it disturbs the building block.

For AntTAG, five populations of 10 to 50, with a step
of 10, ants were used. The performance was found to
be optimal with 30 ants. To have a fair comparison
with GP and TAG3P, the maximum number of objec-
tive evaluations in AntTAG is set to the population size
in GP x number of generations. Each element, a;;, in
the pheromone matrix is initialized with the reciprocal
of the number of entries in the adjunct table where this
element appeared as a destination.

3.2 Results

A summary of the results is presented in Table 1, we
show the performance of AntTAG for different number
of ants. In general, even when AntTAG fails to find a
solution, the average fitness shows that it has found a
good approximation. The best performance occurred
with 30 ants, where the maximum number of success of
finding good solutions was achieved.

In Table 2, we compare the best results of AntTAG
against the performance of GGGP and TAG3P: TAG3P



Table 1: The results of AntTAG for different numbers
of ants. The percentage of success for finding a solution,
the average total number of objective evaluations for suc-
cessful runs, and the average and standard deviation of
the fitness for unsuccessful runs.

Algorithm % of Total objective average
success evaluations fitness
AntTAG 10 48% 4400 0.61 4 0.42
AntTAG 20 66% 7720 0.42 4+ 0.31
AntTAG 30 92% 6240 0.35 & 0.12
AntTAG 40 56% 3000 0.53 + 0.35
AntTAG 50 54% 5500 0.63 4+ 0.40

achieved better performance than GGGP and AntTAG
the best results overall in terms of the success rate, the
average fitness for the best solutions found in unsuccess-
ful runs. In terms of the number of objective evaluations,
AntTAG consumed on the average more objective eval-
uations than TAG3P and less than GGGP. This may in-
dicate that AntTAG was more successful in maintaining
diversity between the ants than TAG3P. In summary,
AntTAG achieved a success as a first attempt to use
a swarm intelligence based approach for evolving pro-
grams.

Table 2: A comparison of the results for GGGP, TAG3P,
and AntTAG. The percentage of success for finding a so-
lution, the average total number of objective evaluations
for successful runs, and the average and standard devia-
tion of the fitness for unsuccessful runs.

Algorithm % of Total objective average
success evaluations fitness
GGGP 48% 7450 1.12 £ 0.39
TAG3P 86% 4440 1.71 £ 1.24
AntTAG 30  92% 6240 0.35 + 0.12

4 Conclusion and Future Work

In this paper, we presented a new swarm—based approach
to evolve programs using the ant colony optimization
algorithm. We named the method AntTAG. On the
sample problem, AntTAG outperformed both grammar
guided genetic Programming and tree adjunct grammar
guided genetic programming. In general, the work con-
firms that ACO can make a significant contribution to
relational learning in general and evolving programs in
specific. This opens up the possibility of a third rela-
tional learning paradigm, relational swarm learning, as
a complement to GP and ILP.
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